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Abstract
We consider distributed statistical optimization and inference in the presence of heterogeneity
among distributed data blocks. A weighted distributed estimator is proposed to improve the statis-
tical efficiency of the standard ”split-and-conquer” estimator for the common parameter shared by
all the data blocks. The weighted distributed estimator is at least as efficient as the would-be full
sample and the generalized method of moment estimators with the latter two estimators requiring
full data access. A bias reduction is formulated for the weighted distributed estimator to accommo-
date much larger numbers of data blocks (relax the constraint fromK = o(N1/2) toK = o(N2/3),
where K is the number of blocks and N is the total sample size) than the existing methods without
sacrificing the statistical efficiency at the same time. The mean square error bounds, the asymptotic
distributions, and the corresponding statistical inference procedures of the weighted distributed and
the debiased estimators are derived, which shows an advantageous performance of the debiased
weighted estimators when the number of data blocks is large.
Keywords: Bias Correction; Distributed Inference; Heterogeneity; Split and Conquer Method;
Weighted Estimation.

1. Introduction

Modern big data have brought new challenges to statistical inference. One such challenge is that
despite the sheer volume of the data, full communication among the data points may not be possible
due to either the cost of data communication or the privacy concern. The distributed or the “split-
and-conquer” method has been proposed to divide the full data sample into smaller size data blocks
to avoid data communication. The split and conquer estimator is also suited to situations where
the data are naturally divided into data blocks and data communication among the data blocks are
prohibited due to privacy concern. The “split and conquer” estimation had been considered in Lin
and Xi (2010) for the U-statistics, Zhang et al. (2013) for the statistical optimization, Chen and Xie
(2014) for the generalized linear models, Volgushev et al. (2017) and Chen et al. (2019) for the
quantile regression, Battey et al. (2018) for high dimensional testing and estimation, and Chen and
Peng (2021) for asymptotic symmetric statistics (Lai and Wang, 1993). Bootstrap resampling-based
methods had been introduced to facilitate statistical inference. Kleiner et al. (2011) proposed the
bag-of-little bootstrap (BLB) method for the plug-in estimators by making up economically the full
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sample for the distributed inference. Sengupta et al. (2015) suggested a sub-sampled double boot-
strap method designed to improve the computational efficiency of the BLB. Chen and Peng (2021)
proposed the distributed and the pseudo-distributed bootstrap methods with the former conducting
the resampling within each data block while the latter directly resampling the distributed statistics.

Privacy has been a major concern in big data applications where people are naturally reluctant
to share the raw data to form a pool of big data as practised in the traditional full sample estimation.
However, the data holders may like to contribute summary statistics without having to give away
the full data information. Federated Learning or the distributed inference with a central host has
been proposed to accommodate such reality (McMahan et al., 2017; Yang et al., 2019; Li et al.,
2020; Kairouz et al., 2021), where summary statistics of the data blocks or the gradients of the
objective functions associated with the private data blocks are submitted to a central host for forming
aggregated estimation or computation.

Homogeneous distribution among the data blocks is assumed in the majority of the statistical
distributed inference studies with a few exceptions (Zhao et al., 2014; Duan et al., 2021). Federated
Learning, on the other hand, was introduced to mitigate challenges arising from classical distributed
optimization. In particular, heterogeneous or non-IID distributed data across different data blocks
is one of the defining characteristics in the Federated Learning (Li et al., 2020; Kairouz et al.,
2021). Indeed, it is natural to expect the existence of heterogeneity, especially for data stored in
different locations or generated by different stochastic mechanisms, for instance, mobile phones of
different users. But few works have focused on the asymptotic statistical properties of the estimator,
especially in a heterogeneous setting.
Main Contributions. This paper considers distributed statistical inference under heterogeneous
distributions among the data blocks, where there is a common parameter shared by the distributions
of the data blocks and data-block-specific heterogeneous parameters. It is noted that Duan et al.
(2021) also considered a heterogeneous setting but under a fully parametric framework. Specifically,
the main contributions of this paper are as follows:

• Our study reveals that in the presence of heterogeneity the full sample estimator of the com-
mon parameter obtained by requiring full data access, can be less efficient than the split and
conquer estimator. It is found that this phenomenon disappears if the objective function of the
statistical optimization satisfies a generalized second-order Bartlett’s identity.

• We propose a weighted distributed (WD) estimator, which is asymptotically at least as effi-
cient as the full sample and the split and conquer estimator when the number of data blocks
K = o(N1/2) where N is the local sample size. The mean square error bound and the
asymptotic distribution of the proposed weighted distributed estimator are derived, as well as
the asymptotic equivalence between the weighted distributed and the generalized method of
moment estimator Hansen (1982).

• We also propose a debiased weighted distributed estimator with a data splitting mechanism on
each data block to remove the dependency between the bias correction and the weights used
to tackle the heterogeneity. The debiased weighted distributed estimator is asymptotically
as efficient as the WD estimator but allows quicker growth for the number of blocks K =
o(N2/3). The bias correction is also applied to the split and conquer formulation leading to a
more communication-efficient debiased split and conquer estimator.
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2. Preliminaries

Suppose that there is a large data sample of size N , which is divided into K data blocks of sizes
{nk}Kk=1 such thatN =

∑K
k=1 nk and let n = NK−1 be the average sample size of the data blocks.

For the relative sample sizes among data blocks, we assume the following.

Assumption 1 There exist c, C > 0 such that c ≤ nk1/nk2 ≤ C for all pairs of (k1, k2).

The k-th data block consists of a sub-sample {Xk,i}nki=1 which are independent and identically
distributed (IID) random vectors from a probability space (Ω,F , P ) to (Rd,Rd) with Fk as the
distribution. The K distributions {Fk} share a common parameter φ ∈ Rp1 , while each Fk has
another parameter λk ∈ Rp2 specific to Fk. The parameters of interests in the k-th block are
θk = (φT , λTk )T , and the overall parameters of interests are θ = (φT , λT1 , λ

T
2 , ..., λ

T
K)T ∈ Rp1+Kp2 .

Suppose there is a common objective function M(X;φ, λk) that is convex with respect to the
parameter (φ, λk) and facilitates the statistical optimization in each data block. In general, the crite-
ria function can be made block specific, sayMk function. Indeed, the presence of the heterogeneous
local parameters {λk}Kk=1 leads to different Mk(x, φ) = M(x, φ, λk) for the inference on φ, which
connects to the multi-task learning.

In the k-th data block the true parameter θ∗k = (φ∗T , λ∗Tk )T is defined as the unique mini-
mum of the expected objective function, namely θ∗k = argminθk∈ΘkEFk (M(Xk,1;φ, λk)). The
true common parameter φ∗ appears in all θ∗k, and the block-specific {λ∗k}Kk=1 may differ from each
other. The entire true parameters θ∗ = (φ∗T , λ∗T1 , · · · , λ∗TK )T , can be also identified as θ∗ =

argminθ∈Θ
∑K

k=1 γkEFk (M(Xk,1;φ, λk)). If the data could be shared across the data blocks, we
would attain the conventional full sample estimator θ̂full = argminθ∈Θ

∑K
k=1

∑nk
i=1M(Xk,i;φ, λk),

which serves as a benchmark for distributed estimators. The estimating equations for the full sample
estimators are {∑K

k=1

∑nk
i=1 ψφ(Xk,i;φ, λk) = 0,∑nk

i=1 ψλ(Xk,i;φ, λk) = 0 k = 1, ...,K,

where ψφ(Xk,i;φ, λk) = ∂M(Xk,i;φ, λk)/∂φ and ψλ(Xk,i;φ, λk) = ∂M(Xk,i;φ, λk)/∂λk are
the score functions. The above full sample estimation is not attainable for the distributed situations
due to privacy or the costs associated with the data communications. The distributed estimation
first conducts local estimation on each data block, namely the local estimator θ̂k = (φ̂k, λ̂k) =
argminθk∈Θk

∑nk
i=1M(Xk,i; θk) with the corresponding estimating equations{∑nk

i=1 ψφ(Xk,i;φk, λk) = 0,∑nk
i=1 ψλ(Xk,i;φk, λk) = 0.

(1)

The split and conquer estimator for the common parameter φ is

φ̂SaC =
1

N

K∑
k=1

nkφ̂k. (2)

The heterogeneity among the distributions of the data blocks call for study the relative efficiency
and the estimation errors, which are the focus of this paper. We are to show that the split and
conquer estimator (2) may not be the best formulation for estimating φ. Throughout this paper,
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unless otherwise stated, ‖ · ‖2 represents the L2 norm of a vector and a matrix. We will use C and
Ci to denote absolute positive constants independent of (nk,K,N).

An important question is the efficiency and the estimation errors of the split and conquer esti-
mator φ̂SaC relative to the full sample estimator φ̂full. For the homogeneous case, Chen and Peng
(2021) found that for the asymptotic symmetric statistics, the split and conquer estimator (2) attains
the same efficiency as the full sample estimator in the non-degenerate case but encounters an ef-
ficiency loss in the degenerate case due to a lack of communications among different data blocks.
Zhang et al. (2013) derived the mean square error bound for the split and conquer estimator in the
homogeneous case and showed that whenever K ≤ N1/2, the split and conquer estimator achieves
the best possible rate of convergence when all N data are accessible.

Consider the estimating equations of the full sample statistical optimization

ΨN (X; θ) =


∑K

k=1

∑nk
i=1 ψφ(Xk,i;φ, λk)∑n1

i=1 ψλ(X1,i;φ, λ1)
...∑nK

i=1 ψλ(XK,i;φ, λK)

 . (3)

Let Ψθ(θk) = E (∇θkM(Xk,1; θk)) and Ψθ
θ(θk) = E(∇2

θk
M(Xk,1; θk)) be the first and second

order gradients of the k-th population objective function, whose matrix forms are:

Ψθ(θk) = (Ψφ(θk)
T ,Ψλ(θk)

T )T , Ψθ
θ(θk) =

(
Ψφ
φ(θk) Ψλ

φ(θk)

Ψφ
λ(θk) Ψλ

λ(θk)

)
.

Let Jφ|λ(θk) = Ψφ
φ(θk)−Ψλ

φ(θk)Ψ
λ
λ(θk)

−1Ψφ
λ(θk), Jλ|φ(θk) = Ψλ

λ(θk)−Ψφ
λ(θk)Ψ

φ
φ(θk)

−1Ψλ
φ(θk),

Sφ(Xk,i; θk) = ψφ(Xk,i; θk) − Ψλ
φ(θk)Ψ

λ
λ(θk)

−1ψλ(Xk,i; θk) and Sλ(Xk,i; θk) = ψλ(Xk,i; θk) −
Ψφ
λ(θk)Ψ

φ
φ(θk)

−1ψφ(Xk,i; θk). Then, apply Taylor’s expansion to obtain (see Section A.1)

φ̂full − φ∗ = −{
K∑
k=1

(nk/N)Jφ|λ(θ∗k)}−1N−1
{ K∑
k=1

nk∑
i=1

Sφ(Xk,i; θ
∗
k)
}

+ op(N
−1/2). (4)

For the local estimator (φ̂k, λ̂k) that solves (1), the same derivation leads to{
φ̂k − φ∗ = −n−1

k Jφ|λ(θ∗k)
−1
∑nk

i=1 Sφ(Xk,i; θ
∗
k) + op(n

−1/2
k ),

λ̂k − λ∗k = −n−1
k Jλ|φ(θ∗k)

−1
∑nk

i=1 Sλ(Xk,i; θ
∗
k) + op(n

−1/2
k ),

Our analysis requires the following conditions.

Assumption 2 (Identifiability) The parameters θ∗k = (φ∗, λ∗k) is the unique minimizer ofMk(θk) =
E(M(Xk,1; θk)) for θk ∈ Θk.

Assumption 3 (Compactness) The true parameter θ∗k is an interior point of the parameter space
Θk which is a compact and convex set in Rp, and supθk∈Θk‖θk − θ∗k‖2 ≤ r for all k ≥ 1 and some
r > 0. The true common parameter φ∗ is an interior point of a subset Φ ⊂ Θk.

Assumption 4 (Local strong convexity) The population objective function on the k-th data block
Mk(θk) = E(M(Xk,1; θk)) is twice differentiable, and there exists a constant ρ− > 0 such that
∇2
θk
Mk(θ

∗
k) � ρ−Ip×p. Here A � B means A−B is a positive semi-definite matrix.
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Assumption 5 (Smoothness, 1) The objective function on the k-th data is twice differentiable with
respect to θk and there are positive constants R,L, v and v1 such that E(‖∇θkM(Xk,1; θ∗k)‖

2v1
2 ) ≤

R2v1 and E(‖∇2
θk
M(Xk,1; θ∗k) − ∇2

θk
Mk(θ

∗
k)‖2v2 ) ≤ L2v for all k ≥ 1. There are also positive

constants ρ and G such that ‖∇2
θk
M(x; θk) −∇2

θk
M(x; θ′k)‖2 ≤ G(x)‖θk − θ′k‖2 for all θk, θ′k ∈

Uk = {θk | ‖θk − θ∗k‖2 ≤ ρ} and x ∈ Rd, and E(G(Xk,1)2v) ≤ G2v.

Assumptions 2-4 are standard ones on the parameter space and population objective functions for
the homogeneous case (Jordan et al., 2019). In the heterogeneous case, Duan et al. (2021) requires
the parameter space for the common parameter to be bounded, i.e. ‖φ − φ∗‖ ≤ r under a fully
parametric setting, while we need the overall parameter space to be bounded. The stronger condition
is needed since we do not fully specify the distributions {Fk}Kk=1 and it will be used when we
derive the mean squared error bound for the proposed weighted distributed estimator in Section 4.
Assumption 5 specifies the Lipschitz continuity of the outer product Z(x; θk) with respect to θk,
which is to control the estimation error when we estimate the asymptotic covariance matrix of the
local estimator θ̂k. Section A.2 shows it is valid for the logistic regression model.

3. Full Sample versus split and conquer Estimation

It is expected that the full sample estimator φ̂full should be at least as efficient as φ̂SaC since the
former utilizes the full sample information allowing communications among data blocks. However,
we show that this is not necessarily the case under heterogeneity.

It is worth mentioning that we assume K being fixed in the following Proposition 1 and The-
orem 2 for simplicity of formulating the asymptotic variance of the estimators, which helps us to
motivate the weighted distributed estimator. We allow diverging K along with N in the subsequent
theoretical results. In particular, we will discuss how to improve the divergence rate ofK in Section
5.

Proposition 1 Under Assumptions 1 - 4 and Assumption 5 with v, v1 ≥ 1, and if K is fixed, then
θ̂k → θ∗k and θ̂full → θ∗ in probability; φ̂SaC = (1/N)

∑K
k=1 nkφ̂k and φ̂full are consistent to φ∗.

Theorem 2 Under Assumptions 1 - 4 and Assumption 5 with v, v1 ≥ 2, if K is fixed and nk/N →
γk ∈ (0, 1) for a set of constants {γk}Kk=1, then

√
N(φ̂SaC − φ∗)→ N (0p1 ,

K∑
k=1

γkJφ|λ(θ∗k)
−1Σk(θ

∗
k)Jφ|λ(θ∗k)

−1) and

√
N(φ̂full − φ∗)→ N (0p1 , (

K∑
k=1

γkJφ|λ(θ∗k))
−1(

K∑
k=1

γkΣk(θ
∗
k))(

K∑
k=1

γkJφ|λ(θ∗k))
−1),

where Σk = V ar{Sφ(Xk,1; θ∗k)}.

Define V (Σ, A) = (AT )−1ΣA−1 as a mapping from Sp1×p1
++ × GL(Rp1) to Sp1×p1

++ , where
Sp1×p1

++ and GL(Rp1) denote the symmetric positive definite matrices and invertible real matrices of
order p1, respectively. In fact, V (·, ·) is a non-convex function, which means that

(
K∑
k=1

γkJφ|λ(θ∗k))
−1(

K∑
k=1

γkΣk(θ
∗
k))(

K∑
k=1

γkJφ|λ(θ∗k))
−1 6�

K∑
k=1

γkJφ|λ(θ∗k)
−1Σk(θ

∗
k)Jφ|λ(θ∗k)

−1.
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In other words, φ̂full is not necessarily more efficient than φ̂SaC .
To gain understanding of Theorem 2, we consider the errors-in-variables model. Suppose there

are K independent data blocks {(Xk,i, Yk,i)}ni=1 for k = 1, 2...,K, where (Xk,i, Yk,i) are IID and
generated from

Xk = Zk + ek, Yk = φ∗ + λ∗kZk + fk, (6)

where {Zk}Kk=1 are random variables whose measurements {(Xk, Yk)}Kk=1 are subject to errors
{(ek, fk)}Kk=1, and (ek, fk) are bivariate normally distributed with zero mean and covariance matrix
σ2I2 and is independent of Z. Obviously, φ∗ is the common parameter across all data blocks while
λ∗k(λ

∗
k > 0) represents the block specific parameter. The condition V ar(e) = V ar(f) is assumed

to avoid any identification issue arising when Z is also normally distributed (Reiersol, 1950). We
consider the approach in Example 5.26 of van der Vaart (1999) as detailed in Section A.3, which
leads to the M-function

M(Xk, Yk; θk) =
1

2σ2(1 + λ2
k)

(λkXk − (Yk − φ))2. (7)

For simplicity we assume K = 2, then from Theorem 2 we have
var(φ̂full) ≈

(
σ2E(Z2)

var(Z)
2

1

1+λ∗21
+ 1

1+λ∗22

+ σ4(E(Z))2

var2(Z)

2

(1+λ∗21 )2
+ 2

(1+λ∗22 )2

( 1

1+λ∗21
+ 1

1+λ∗22
)2

)
1
N ,

var(φ̂SaC) ≈
(
σ2E(Z2)

var(Z)
(1+λ∗21 )+(1+λ∗22 )

2 + σ4(E(Z))2

var2(Z)

)
1
N .

(8)

In the heterogeneous setting (λ∗1 6= λ∗2), cases are presented in Section C.2 where φ̂full has larger
variance than the split and conquer estimator φ̂SaC .

4. Weighted Distributed Estimator

That the full sample estimator φ̂full under heterogeneity may be less efficient than the simple aver-
aged φ̂SaC suggests that the wisdom formulated in the homogeneous context may not be applicable
to the heterogeneous case. How to better aggregate the local estimators {φ̂k} for more efficient
estimation is the focus of this section.

4.1 Formulation and Results

Consider a class of estimators formed by linear combinations of the local estimators {φ̂k}:

{φ̂SaCw | φ̂SaCw =
K∑
k=1

Wkφ̂k,Wk ∈ Rp1×p1 ,
K∑
k=1

Wk = Ip1}.

We want to minimize the asymptotic variance of φ̂SaCw with respect to weighting matrices {Wk}Kk=1.
It may be shown from Theorem 2 that var(φ̂SaCw ) ≈

∑K
k=1 n

−1
k WkA

−1
k Σk(A

T
k )−1W T

k , whereAk =
Jφ|λ(θ∗k) and Σk = var (Sφ(Xk,i; θ

∗
k)). It is noted that the asymptotic variance is defined via the

asymptotic normality of the statistical optimization. For the time being, Ak and Σk are assumed
known and denote Hk = A−1

k Σk(A
T
k )−1. We choose the trace operator as a measure of the size of
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the covariance matrix, which leads to a minimization problem:

Minimize
Wk

tr

( K∑
k=1

n−1
k WkHkW

T
k

)
s.t.

K∑
k=1

Wk = Ip1 . (9)

It is a convex optimization problem and can be solved via the Lagrangian multiplier method, which
gives the optimal weighting matrices W ∗k = (

∑K
s=1 nsH

−1
s )−1nkH

−1
k . If we replace the trace with

the Frobenius norm in (9), the same solution is attained as shown in Section A.4. The split and
conquer estimator with the optimal weights W ∗k is called the weighted distributed estimator and
denoted as φ̂WD, which is at least as efficient as φ̂SaC by construction.

To compare the efficiency between φ̂full and φ̂WD, we note that their covariances

var(φ̂full) ≈
{

(

K∑
k=1

nkAk)
T (

K∑
k=1

nkΣk)
−1(

K∑
k=1

nkAk)
}−1 and

var(φ̂WD) ≈

(
K∑
k=1

nkA
T
k Σ−1

k Ak

)−1

, respectively. (10)

Define F (Σ, A) = ATΣ−1A, which is a generalized convex function with respect to the ma-
trix inequality shown in Lemma S1. Applying Jensen’s inequality leads to the that the weighed
distributed estimator is at least as efficient as the full sample estimator φ̂full. Thus, the estimating
equations (3) obtained from the first-order derivative of the simple summation of local objectives∑nk

i=1M(Xk,i; θk) may not be the best formulation. In contrast, the weighted distributed estimator
exploits the potential efficiency gain from the heterogeneity by re-weighting of the local estimators,
which is why the full sample estimator may not be as efficient as the weighted distributed estimator.

4.2 Likelihood and Quasi-likelihood

The above results lead us to wonder whether the weighted distributed estimator can also be more
efficient than the full sample estimator under the heterogeneity in a fully parametric setting. The
answer is negative as shown below.

When the distribution of Xk,i is fully parametric with density function f(·;φ, λk), the Fisher
information matrix in the k-th data block is

I(θk) = I(φ, λk) =

(
Iφφ Iφλk
Iλkφ Iλkλk

)
= −E

(
∂2

∂φ2 logf(Xk,1; θk)
∂2

∂φ∂λT
logf(Xk,1; θk)

∂2

∂λ∂φT
logf(Xk,1; θk)

∂2

∂λ2 logf(Xk,1; θk)

)
,

and the partial information matrix Iφ|λk = Iφφ − IφλkI
−1
λkλk

Iλkφ.
Now, the objective function for the statistical optimization isM(Xk,i;φ, λk) = − log f(Xk,i;φ, λk).

Routine derivations show that Σk = var (Sφ(Xk,1; θ∗k)) = Iφ|λk and Ak = Jφ|λ(θ∗k) = Iφ|λk .

Hence, var(φ̂full) ≈ var(φ̂WD) ≈
(∑K

k=1 nkIφ|λk

)−1
and var(φ̂SaC) ≈ (1/N2)

∑K
k=1 nkI

−1
φ|λk .

A direct application of Lemma S1 shows that
(∑K

k=1 nkIφ|λk

)−1
� (1/N2)

∑K
k=1 nkI

−1
φ|λk . Thus,

the full sample maximum likelihood estimator automatically adjusts for the heterogeneity and has
the same asymptotic efficiency as that of the weighted distributed estimator. Both estimators are at
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least as efficient as the split and conquer estimator φ̂SaC . The same is true for the quasi-likelihood
estimation with independent observations (see Section A.5).

A close examination reveals that the underlying reason for the asymptotic equivalence between
the weighted distributed estimator and the likelihood-based full sample estimators is that the two
statistical optimization functions satisfy the second order Bartlett’s identity (Bartlett, 1953; Mc-
Cullagh, 1983): E(∇M(Xk, θ

∗
k)∇M(Xk, θ

∗
k)
T ) = E(∇2M(Xk, θ

∗
k)). By the asymptotic variance

formula of the estimator and Lemma S1, it is apparent that Bartlett’s identity can be relaxed by
allowing a factor γ 6= 0 such that

E(∇M(Xk, θ
∗
k)∇TM(Xk, θ

∗
k)) = γE(∇2M(Xk, θ

∗
k)). (11)

An example of such cases is the least square estimation in the parametric regression with ho-
moscedastic and non-autocorrelated residuals in Section A.6. Otherwise, the full sample least square
estimator may not be efficient and there is an opportunity for the weighted least square estimation.
Thus, if M(xk, θk) satisfies (11), φ̂full attains the same efficiency as φ̂WD.

4.3 Relation to Generalized Method of Moment Estimation

To further justify the efficiency of the weighed distributed estimation, we consider the generalized
method of moment (GMM) estimator (Hansen, 1982), which has certain optimal property for the
semiparametric inference that the weighted distributed estimation can compare with, despite it re-
quires full data sharing.

The score functions of the statistical optimization on each data block are aggregated to form the
moment equations {∑nk

i=1 ψφ(Xk,i;φ, λk) = 0,∑nk
i=1 ψλ(Xk,i;φ, λk) = 0, k = 1, ...,K,

(12)

which have pK estimating equations, where the dimension of θ∗ is pK − (K − 1)p1. Thus, the
parameter is over-identified which offers potential efficiency gain for the generalized method of mo-
ment. The GMM estimation based on the moment restrictions (12) solves the minimization problem
θ̂GMM = argmin ψ̃TN (θ)W0ψ̃N (θ), where W0 = {var(ψ̃N (θ∗))}−1 is the optimal weighting ma-
trix (Hansen, 1982; Yaron et al., 1996) and ψ̃N (θ) = (

∑n1
i=1 ψφ(X1,i; θ1)T ,

∑n1
i=1 ψλ(X1,i; θ1)T , · · · ,∑nK

i=1 ψφ(XK,i; θK)T ,
∑nK

i=1 ψλ(XK,i; θK)T )T .
Let the first p1 elements of θ̂GMM be φ̂GMM as an estimator of the common parameter. A

derivation in Section A.7 shows that var(φ̂GMM ) ≈ {
∑K

k=1 nkJφ|λΣ−1
k Jφ|λ}−1. Thus, the weighted

distributed estimator’s efficiency is the same as that of φ̂GMM . This is encouraging as the weighted
distributed estimator does it without requiring data sharing among the blocks.

4.4 Estimation of weights in one round communication

To formulate the weighed distributed estimator, we have to estimate the optimal weights W ∗k =

(
∑K

s=1 nsH
−1
s )−1nkH

−1
k . As we will show in Theorem 4, the estimation of the weights will not af-

fect the estimation efficiency of the weighted distributed estimator attained in (10). By the structure
of W ∗k , we only need to estimate Hk, the leading principal submatrix of order p1 of the asymptotic
covariance matrix H̃k of θ̂k. Note that

H̃k = (∇Ψθ(θ
∗
k))
−1E{ψθk(Xk,1; θ∗k)ψθk(Xk,1; θ∗k)

T }(∇Ψθ(θ
∗
k))
−1 =

(
Hk ∗
∗ ∗

)
,

8
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where Ψθ(θk) = Eψθk(Xk,1; θk). We can construct a sandwich type estimator (Stefanski and Boos,
2002) to estimate H̃k and then Hk. The procedure to obtain the weighted distributed estimator is
summarized in Algorithm 1.

Input: Distributed datasets: {Xk,i, k = 1, ...,K; i = 1, ..., nk}
Output: Weighted distributed estimator: φ̂WD

1 In each data block k (k = 1, 2, · · · ,K):
2 Solve (1) and obtain θ̂k = (φ̂k, λ̂k) ;
3 Calculate Ĥk(θ̂k), which is the leading principal sub-matrix of order p1 of

(∇θkΨ̂θk)−1(n−1
k

∑nk
i=1 Z(Xk,i; θ̂k))(∇θkΨ̂θk)−T , where Z(x, θk) is defined in

Assumption 5 and Ψ̂θk = n−1
k

∑nk
i=1 ψθk(Xk,i; θ̂k);

4 In a central server:
5 Collect (φ̂k, Ĥk(θ̂k)

−1) from all the K data blocks;
6 Calculate φ̂ = (

∑K
k=1 nkĤk(θ̂k)

−1)−1
∑K

k=1 nk(Ĥk(θ̂k))
−1φ̂k ;

7 φ̂WD = φ̂I(φ̂ ∈ Φ) + φ̂SaCI(φ̂ 6∈ Φ), where φ̂SaC = N−1
∑K

k=1 nkφ̂k.
Algorithm 1: Weighted Distributed estimator

Step 7 of the algorithm is necessary since there is no guarantee that after weighting the estimator
˜̂
φWD belongs to the set Φ as required in Assumption 3. However, the event { ˜̂

φWD ∈ Φ} should

happen with probability approaching one. Hence, the φ̂SaCI(
˜̂
φWD 6∈ Φ) term is negligible. To

establish the theoretical properties of the weighted distributed estimator, we impose the following
assumptions.

Assumption 6 (Smoothness, 2) Denote Z(x, θk) = ∇θkM(x; θk)∇θkM(x; θk)
T , then there are

positive constants ρ and B such that Z(x, θk) is B(x)−Lipschitz continuous with respect to θk, in
the sense that ‖Z(x, θk)−Z(x, θ′k)‖2 ≤ B(x)‖θk− θ′k‖2 for all θk, θ′k ∈ Uk = {θk | ‖θk− θ∗k‖2 ≤
ρ} and x ∈ Rd, and E(B(Xk,1)2v) ≤ B2v .

Assumption 7 (Boundedness) Denote ΣS,k(θk) = EFk(ψθk(Xk,1; θk)ψθk(Xk,1; θk)
T ), then there

exists constants ρσ, c > 0 such that‖ΣS,k(θ
∗
k)‖2 ≤ ρσ and Hk � cIp1×p1 for k ≥ 1, where θ∗k is the

minimizer of the k-th population objective function andHk = Jφ|λ(θ∗k)
−1var(Sφ(Xk,1; θ∗K))Jφ|λ(θ∗k)

−1.

ByHk’s definition, ‖Hk‖2 ≤ ‖Ψθ
θ(θ
∗
k)
−1‖22‖ΣS,k(θ

∗
k)‖2 ≤ ρσρ

−2
− , implyingH−1

k � (ρ2
−/ρσ)Ip1×p1 .

On the other hand, the above inequality leads to ‖Ψθ
θ(θ
∗
k)
−1‖2 ≥ (c/ρσ)1/2, which indicates a finite

upper bound for the norm of the Hessian, as assumed in Jordan et al. (2019) and Duan et al. (2021).

Theorem 3 Under Assumptions 1 - 4 and 7, and Assumption 5 - 6 with v, v1 ≥ 2 , the mean-squared
error of the weighed distributed estimator φ̂WD satisfies

E
(
‖φ̂WD − φ∗‖22

)
≤ C1

nK
+
C2

n2
+

C3

n2K
+
C4

n3
+
C5K

nv̄
,

for n = NK−1 and v̄ = min{v, v1/2}.

The v and v1 appeared in Assumptions 5 - 6 quantify the moments of the first two orders of
the gradients of the M -function and their corresponding Lipschitz functions. When the number

9
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of data blocks K = O(nmin{1,(v̄−1)/2}), the convergence rate of mean squared error of φ̂WD is
O((nK)−1), which is the same as the standard full sample estimator. However, when there are too
many data blocks such that K � n, the convergence rate is reduced toO(n−2). Furthermore, if the
derivatives of the M function and their corresponding Lipschitz functions are heavy-tailed so that
v̄ < 3, the convergence rate is further reduced to O(Kn−v̄).

Theorem 4 Under Assumptions 1 - 4 and 7, and Assumptions 5 - 6 with v, v1 ≥ 2, ifK = o(N1/2),
then

(
φ̂WD − φ∗)T

(∑K
k=1 nkH

−1
k

) (
φ̂WD − φ∗)→ χ2

p1
.

As mentioned before, K is allowed to diverge with the full sample size at the rate o(N1/2).
Although {Hk}Kk=1 have bounded spectral norms,

∑K
k=1(nk/N)H−1

k may not converge to a fixed
matrix in the presence of heterogeneity. Thus, we can only obtain the asymptotic normality of the
standardized N−1/2{

∑K
k=1(nk/N)H−1

k }
1/2(φ̂DW − φ∗). This is why Theorem 4 is presented in

the limiting chi-squared form, which implies that we can construct confidence regions for φ with
confidence level 1− α as

{φ |
(
φ̂WD − φ)T

(
K∑
k=1

nkĤk(θ̂k)
−1

)(
φ̂WD − φ) ≤ χ2

p1,α}

after replacing
∑K

k=1 nkH
−1
k with its sample counterpart

∑K
k=1 nkĤk(θ̂k)

−1, where χ2
p1,α is the

upper α quantile of the χ2
p1

distribution. Given the weighted distributed estimator of the common
parameter φ∗, a natural question is that whether a more efficient estimator of the block-specific λ∗k
can be obtained, if we plug in the weighed distributed estimator to each data block and re-estimate
λk. Let λ̂(2)

k be the updated estimator. Results in Section A.8 show that λ̂(2)
k is not necessarily more

efficient than the local estimator λ̂k.

5. Debiased Estimator for diverging K

It is noted that K = o(N1/2) is required in Theorems 3 and 4 to attain the O(N−1) leading order
mean square error and the limiting chi-squared distribution of the weighed distributed estimator
φ̂WD. A reason for this requirement is that the bias of the local estimator θ̂k is at order Op(n−1

k ),
which can not be reduced by the weighted averaging. This leads to the bias of N1/2(φ̂WD −
φ∗) being at the order Op(KN−1/2), which is not necessarily diminishing to zero unless K =
o(N1/2). It is worth mentioning that Duan et al. (2021) needed the same K = o(N1/2) order
in their maximum likelihood estimation framework to obtain the N1/2-convergence since Li et al.
(2003) showed that the maximum likelihood estimator is asymptotically biased when K/n→ C ∈
(0,+∞). This calls for a bias reduction step for the local estimators before aggregation to allow for
larger K.

To facilitate the bias correction, we have to simplify the notation. Suppose F (θ) is a p × 1
vector function, ∇F (θ) is the usual Jacobian whose l-th row contains the partial derivatives of the
l-th element of F (θ). Then, the matrices of higher derivatives are defined recursively so that the
j-th element of the l-th row of∇sL(θ) (a p×ps matrix) is the 1×p vector fvlj(θ) = ∂fv−1

lj (θ)/∂θT ,
where fv−1

lj is the l−th row and j-th element of ∇v−1F (θ). Let ⊗ denote the Kronecker product.
Using Kronecker product we can express ∇vF (θ) = ∂vF (θ)/(∂θT ⊗ ∂θT ⊗ · · · ⊗ ∂θT ). Be-
sides, define Mn,k(θk) = n−1

k

∑nk
i=1M(Xk,i; θk), H3,k(θk) = E(∇2

θk
ψθk(Xk,1; θk)), Qk(θk) =

10
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{−E(∇θkψθk(Xk,1; θk))}−1, di,k(θk) = Qk(θk)ψθk(Xk,i; θk) and vi,k(θk) = ∇θkψθk(Xk,i, θk) −
∇θkΨθ(θk). Then, the leading order bias of θ̂k (Rilstone et al., 1996) is

Bias(θ̂k) = n−1
k Qk(θ

∗
k){E (vi,k(θ

∗
k)di,k(θ

∗
k)) +

1

2
H3,k(θ

∗
k)E (di,k(θ

∗
k)⊗ di,k(θ∗k))}.

Let Bk(θk) = Qk(θk){E (vi,k(θk)di,k(θk)) + 1
2H3,k(θk)E (di,k(θk)⊗ di,k(θk))}, whose first p1

dimension associated with φ are denoted as B1
k(θk). An estimator of Bk(θk) is

B̂k(θk) = Q̂k(θk)
(
n−1
k

nk∑
i=1

v̂i,k(θk)d̂i,k(θk) +
1

2
Ĥ3,k(θk)n

−1
k

nk∑
i=1

(d̂i,k(θk)⊗ d̂i,k(θk))
)
, (13)

where Ĥ3,k(θk) = n−1
k

∑nk
i=1∇2

θk
ψθk(Xk,i; θk), Q̂k(θk) = {−n−1

k

∑nk
i=1∇θkψθk(Xk,i; θk)}−1,

d̂i,k(θk) = Q̂k(θk)ψθk(Xk,i; θk) and v̂i,k(θk) = ∇θkψθk(Xk,i; θk). Applying it to each data block,
we have the bias-corrected local estimator

θ̂k,bc = θ̂k − n−1
k B̂k(θ̂k)1Ek,bc

where Ek,bc = {θ̂k − n−1
k B̂k(θ̂k) ∈ Θk}, and the indicator function is to ensure that θ̂k,bc ∈ Θk.

After the local debiased estimators are obtained, we need to aggregate them via the estimated
weights. A direct aggregation will invalidate the bias correction due to the dependence between the
estimated weights and the local debiased estimator if they are constructed with the same dataset.
The accumulation of dependence over a large number of data blocks can make the bias correction
fail. To remove the dependence between the local estimator θ̂k,bc and the estimated local weights
Ŵk = {

∑K
s=1 Ĥs(θ̂s)

−1}−1Ĥk(θ̂k)
−1, we divide each local dataset {Xk,i}nki=1 to two basically

equal-sized splits Ds
k = {X(s)

k,i }
nk/2
i=1 , s = 1, 2. For s = 1, 2, we calculate the local estimators θ̂k,s

and obtain Ĥk,s(θ̂k,s), which is the first p1 principal sub-matrix of

(∇θkΨ̂θk)−1((2/nk)

nk/2∑
i=1

ψθk(X
(s)
k,i ; θ̂k,s)ψθk(X

(s)
k,i ; θ̂k,s)

T )(∇θkΨ̂θk)−T ,

where Ψ̂θk = (2/nk)
∑nk/2

i=1 ψθk(X
(s)
k,i ; θ̂k,s). We perform the local bias correction to θ̂k,s based on

a split with the weight obtained by the other, leading to two debiased estimators of the form

{
K∑
k=1

nkĤk,s(θ̂k,s)
−1}−1

K∑
k=1

nk(Ĥk,s(θ̂k,s))
−1φ̂bck,2−|s−1| for s = 1, 2.

The two debiased local estimators are averaged to obtain the final debiased weighed distributed
estimator, whose procedure is summarized in Algorithm 2. To provide a theoretical guarantee on
the bias correction, we need an assumption on the third-order gradient of the M-function (see Zhang
et al. (2013)), which strengthens a part of Assumption 5.

Assumption 8 (Strong smoothness) For each x ∈ Rp, the third order derivatives ofM(x; θk) with
respect to θk exist and are A(x)− Lipschitz continuous in the sense that

‖(∇2
θk
ψθk(x; θk)−∇2

θk
ψθk(x; θ

′
k))(u⊗ u)‖2 ≤ A(x)‖θk − θ

′
k‖2‖u‖22,

for all θk, θ
′
k ∈ Uk defined in Assumption 5 and u ∈ Rp, where E(A(Xk,i)

2v) ≤ A2v for some
v > 0 and A <∞.

11
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Input: Distributed datasets: {Xk,i, k = 1, ...,K; i = 1, ..., nk}
Output: debiased weighted distributed estimator: φ̂dWD

1 In each data block k (k = 1, 2, · · · ,K):

2 Split the local dataset into two equal sized subsets: Ds
k = {X(s)

k,i }
nk/2
i=1 , s = 1, 2 ;

3 Solve (1) based on Ds
k and obtain θ̂k,s = (φ̂k,s, λ̂k,s) for s = 1, 2 ;

4 Calculate Ĥk,s(θ̂k,s) based on Ds
k and θ̂sk for s = 1, 2;

5 Calculate θ̂bck,s = θ̂k,s − 2n−1
k B̂k,s(θ̂k,s)1Ek,bc,s using formula (13) for s = 1, 2, where

Ek,bc,s = {θ̂k,s − 2n−1
k B̂k,s(θ̂k,s) ∈ Θk} ;

6 In a central server:
7 Collect {φ̂bck,s, Ĥk,s(θ̂k,s)

−1, s = 1, 2} from all the K data blocks;

8 Construct φ̂s = (
∑K

k=1 nkĤk,s(θ̂k,s)
−1)−1

∑K
k=1 nkĤk,s(θ̂k,s)

−1φ̂bck,2−|s−1|;

9 Calculate φ̂dWD
s = φ̂sI(φ̂s ∈ Φ) +K−1

∑K
k=1 nkφ̂

bc
k,2−|s−1|I(φ̂s 6∈ Φ) for s = 1, 2;

10 φ̂dWD = 2−1
∑2

s=1 φ̂
dWD
s .

Algorithm 2: debiased Weighted Distributed (dWD) Estimator

Theorem 5 Under Assumptions 1 - 4 and 7 - 8, and Assumptions 5 - 6 with v, v1 ≥ 4 ,

E(‖φ̂dWD − φ∗‖22) ≤ C1

nK
+

C2

n2K
+
C3

n3
+

C4K

nmin{v,v1/2}
.

The main difference between the upper bounds in Theorem 5 from that in Theorem 3 for the
weighed distributed estimator is the disappearance of the O(n−2) term for the weighed distributed
estimator, which has been absorbed into the O((n2K)−1 + n−3) terms for the debiased weighed
distributed estimator. As shown next, this translates to a more relaxed K = o(N2/3) condition as
compared with the K = o(N1/2) condition for the weighed distributed estimator in Theorem 4.

Theorem 6 Under the conditions required by Theorem 5, if K = o(N2/3),

(φ̂dWD − φ∗)T
(

K∑
k=1

nkHk(θ
∗
k)
−1

)
(φ̂dWD − φ∗) d→ χ2

p1
.

Theorem 6 is also formulated in the chi-squared distribution form for the same reason when we
formulate Theorem 4, and similar confidence region with confidence level 1−α can be constructed
as {φ |

(
φ̂dWD − φ)T {

∑K
k=1 nkHk(θ̂k)

−1}
(
φ̂dWD − φ) ≤ χ2

p1,α}.
The fact that the confidence regions of debiased weighted distributed and weighted distributed

estimators use the same standardizing matrix
∑K

k=1 nkĤk(θ̂k)
−1 reflects that both estimators have

the same estimation efficiency. However, the debiased version has more relaxed constraint on K =
o(N2/3) than that of the WD estimator at K = o(N1/2) .

Both the debiased and non-debiased weighted distributed estimators are communication effi-
cient as they only require one round of communication. When the communication budget is strictly
limited, people may only share the debiased estimators without transmitting the weights. In this
case, one may consider the following debiased split and conquer estimator

φ̂dSaC = N−1
K∑
k=1

nk(φ̂k − n−1
k B̂1

k(θ̂k)1Ek,bc),

12
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which only performs bias correction and may be preferable when the heterogeneity is not severe.
The asymptotic property of φ̂dSaC is summarized in the following theorem.

Theorem 7 Under the conditions required by Theorem 5, if K = o(N2/3), the debiased split and
conquer estimator φ̂dSaC satisfies that (i) E

(
‖φ̂dSaC − φ∗‖22

)
≤ C1/(nK) +C2/(n

2K) +C3/n
3

and (ii) N2(φ̂dSaC − φ∗)T
(∑K

k=1 nkHk(θ
∗
k)
)−1

(φ̂dSaC − φ∗)→ χ2
p1

.

The corresponding confidence region with confidence level 1 − α can be constructed as {φ |
N2
(
φ̂dSaC−φ)T

(∑K
k=1 nkĤk(θ̂k)

)−1 (
φ̂dSaC−φ) ≤ χ2

p1,α}. It is noted that the debiased version

of the split and conquer estimator φ̂dSaC has the same asymptotic distribution as that of φ̂SaC , but
under a much more relaxed constraint on the divergence rate of K. Hence, the confidence regions
based on the split and conquer estimator can be constructed in the same way as that based on the
weighted distributed estimator with φ̂dSaC replaced by φ̂SaC .

To compare with the subsampled average mixture method (SAVGM) estimator proposed in
Zhang et al. (2013), which also performs local bias correction but under the homogeneous setting,
we have the following corollary to Theorem 7.

Corollary 8 Under the homogeneous case such that {Xk,i, k = 1, ...,K, i = 1, ..., n; } are IID
distributed, and the assumptions required by Theorem 5,

E
(
‖θ̂dSaC − θ∗1‖22

)
≤

2E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

n2K
+
C2

n3
,

where θ∗1 is the true parameter for all the K data blocks.

The SAVGM estimator resamples brnkc data points from each data block k for a r ∈ (0, 1) to
obtain a local estimator θ̂SaCk,r based on the sub-samples, and has the form

θ̄SAV GM =
θ̂SaCk − rθ̂SaCk,r

1− r
. (14)

Its mean squred error bound as given in Theorem 4 of Zhang et al. (2013) is

E
(
‖θ̄SAV GM − θ∗1‖22

)
≤ 2 + 3r

(1− r)2

E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

n2K
+
C2

n3
. (15)

Thus, the mean squared error bound (15) of the SAVGM estimator has an inflated factor (2 +
3r)(1 − r)−2/2 > 1 for r ∈ (0, 1) when compared with that of the dSaC estimator, although
it is computationally more efficient than the debiased split and conquer and debiased weighted
distributed estimators as it only draws one subsample in its resampling. For more comparisons
between the debiased split and conquer estimator and one-step estimators proposed by Huang and
Huo (2019), see Section A.10.
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6. Numerical Results

6.1 Simulation study

We report results from simulation experiments designed to verify the theoretical findings made in
the previous sections, which was to evaluate the numerical performance of the proposed weighted
distributed (WD), debaised split and conquer (dSaC) and debiased weighted distributed (dWD)
estimators of the common parameter and compare them with the existing split and conquer (SaC)
and subsampled average mixture method (SAVGM) (with subsampling rate r = 0.05) estimators.
Although Zhang’s SAVGM estimator (Zhang et al., 2013) was proposed under the homogeneous
setting, but since its main bias correction is performed locally on each data block k as shown in
(14), similar theoretical bounds as (15) can be derived without much modifications on the original
proof. Throughout the simulation experiments, the results of each simulation setting were based
on B = 500 number of replications and were conducted in R with a 10-core Intel(R) Core(TM)
i9-10900K @3.7 GHz processor. We evaluated the numerical performance of the five estimators
for the common parameter φ under a logistic regression model. For each of K data block with
K ∈ {10, 50, 100, 250, 500, 1000, 2000}, {(Xk,i;Yk,i)}ni=1 ⊂ Rp × {0, 1} were independently
sampled from the following model:

Xk,i ∼ N (0p×1, 0.752Ip×p) and P (Yk,i = 1 | Xk,i) =
exp(XT

k,iθ
∗
k)

1 + exp(XT
k,iθ
∗
k)
,

where θ∗k = (φ∗T , λ∗Tk )T , φ∗ = 1, λ∗k = (λ∗k,1, λ
∗
k,2, · · · , λ∗k,p2

)T and λ∗k,j = (−1)j10(1 − 2(k −
1)/(K − 1)). The sample sizes of the data blocks were equal at n = NK−1 with N = 2 × 106.
Two levels of the dimension p2 = 4 and 10 of the nuisance parameter λk were considered. Due to
space limit, we only report the set of result with p2 = 10 in the main paper. See Section A.9 for the
result with p2 = 4 and a derivation of the bias correction formula for the logistic model.

Figure 1 reports the root mean square errors and absolute bias of the estimators when p2 = 10.
It is observed that the weighted distributed estimator and the two debiased estimators had smaller
root mean square errors than those of the SaC and SAVGM for almost all the simulation settings.
The classical split and conquer estimator fared better than Zhang’s SAVGM estimator as K became
larger, which is due to the extra variation introduced by the subsampling method as indicated in (15),
especially when K is large (the local sample size n is small). It was evident that the WD estimator
had much smaller root mean square errors than the SaC and SAVGM estimators for all the block
numberK, realizing its theoretical promises. In most cases, the WD estimator had smaller bias than
the SaC estimator although it was not debiased. The WD estimator was advantageous for K ≤ 250.
In comparison, both bias corrected dWD and dSaC were very effective in reducing the bias of the
WD and SaC estimators, respectively, especially for larger K when the bias was more severe. The
dWD attained the smallest root mean square error and the bias in all settings, suggesting the need for
conducting both weighting and the bias correction in the distributed inference especially for large
K. These empirical results were consistent with Theorems 3 and 5, namely the leading root mean
square error term of the WD estimator changes fromO((Kn)−1) toO(n−2) when K surpasses the
local sample size n, while the leading term of the dWD is still O((nK)−1) until K is much larger
than n2.

We also evaluated the coverage probabilities and widths of the 1 − α (α = 0.01, 0.05, 0.1)
confidence intervals (CIs) of the common parameter based on the asymptotic normality as given
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(a) Absolute Bias (p2 = 10) (b) RMSE (p2 = 10)

Figure 1: Average simulated bias (a) and the root mean square errors (RMSE) (b) of the weighted
distributed (WD) (red circle), the split and conquer(SaC) (blue triangle), the debiased split and
conquer (dSaC) (green square), the debiased weighted distributed (dWD) (purple cross), the sub-
sampled average mixture SAVGM (pink square cross) estimators, with respect to the number of data
blockK for the logistic regression model with the dimension p2 of the nuisance parameter λk being
10, and the full sample size N = 2× 106.

after Theorems 4 and 6. The SAVGM estimator was not included as its asymptotic distribution was
not made available in Zhang et al. (2013). Table 1 reports the empirical coverage and the average
width of the CIs. It is observed that the four types of the CIs all had quite adequate coverage levels
when K ≤ 100. However, for K ≥ 250, the SaC CIs first started to lose coverage, followed
by those of the WD, while the CIs of the dSaC and dWD estimators can hold up to the promised
coverage for all cases of K. Although the dSaC CIs had comparable coverages with the dWD
CIs, their widths were much wider than those of the dWD. This was largely due to the fact that
the weighted averaging conducted in the weighted distributed estimation reduced the variation and
hence the width of the CIs. The widths of the WD CIs were largely the same with those of the dWD,
and yet the coverage levels of the dWD CIs were much more accurate indicating the importance of
the bias correction as it shifted the CIs without inflating the width.

In addition to the simulation experiments on the statistical properties of the estimators, the com-
putation efficiency of the estimators was also evaluated. Table 2 reports the average CPU time per
simulation run based on 500 replications of the five estimators for a range of K of the nuisance
parameter for the logistic regression model with the total sample size N = 2 × 106 and p2 = 10.
The computation speed of the dSaC and dWD estimators were relatively slower than those of the
SaC, WD and Zhang’s SAVGM estimators. The WD estimator was quite fast, which means that the
re-weighting used less computing time than the bias-reduction. In comparison, the dWD estimator
was the slowest as a cost for attaining the best root mean square error among the five estimators
in all settings. It is observed in Table 2 that the overall computation time for each estimator first
decreased and then increased as K became larger. The decrease in time was because of the ben-
efit of the distributed computation, while the increase was due to the increase in the number of
optimization associated with the statistical optimization performed as K got larger. However, it
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Table 1: Coverage probabilities and widths (in parentheses, multiplied by 100) of the 1 − α confi-
dence intervals for the common parameter φ in the logistic regression model based on the asymp-
totic normality of the split and conquer (SaC), the weighted distributed (WD), the debiased split
and conquer (dSaC) and the debiased weighted distributed (dWD) estimators with respect to the
number of data blocks K. The dimension p2 of the nuisance parameter λk is 10 and total sample
size N = 2× 106

K SaC WD dSaC dWD
1− α 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

10 0.99 0.94 0.88 1.00 0.96 0.92 1.00 0.94 0.88 1.00 0.96 0.92
(3.05) (2.32) (1.95) (2.41) (1.84) (1.54) (3.05) (2.32) (1.95) (2.42) (1.84) (1.54)

50 0.99 0.93 0.87 0.99 0.95 0.88 0.98 0.94 0.88 0.99 0.96 0.88
(2.94) (2.24) (1.88) (2.29) (1.74) (1.46) (2.94) (2.24) (1.88) (2.29) (1.74) (1.46)

100 0.97 0.89 0.84 0.97 0.93 0.87 0.98 0.95 0.90 0.98 0.94 0.89
(2.93) (2.23) (1.87) (2.28) (1.74) (1.46) (2.93) (2.23) (1.87) (2.29) (1.74) (1.46)

250 0.89 0.72 0.63 0.98 0.92 0.87 1.00 0.97 0.90 1.00 0.96 0.90
(2.94) (2.24) (1.88) (2.28) (1.74) (1.46) (2.94) (2.24) (1.88) (2.29) (1.74) (1.46)

500 0.51 0.28 0.18 0.93 0.81 0.70 0.99 0.94 0.90 0.98 0.94 0.88
(2.97) (2.26) (1.90) (2.29) (1.74) (1.46) (2.97) (2.26) (1.90) (2.30) (1.75) (1.47)

1000 0.00 0.00 0.00 0.66 0.37 0.28 0.99 0.95 0.90 0.99 0.96 0.89
(3.04) (2.31) (1.94) (2.30) (1.75) (1.47) (3.04) (2.31) (1.94) (2.34) (1.78) (1.49)

2000 0.00 0.00 0.00 0.02 0.00 0.00 0.99 0.96 0.90 0.99 0.93 0.87
(3.22) (2.45) (2.06) (2.34) (1.78) (1.49) (3.22) (2.45) (2.06) (2.40) (1.82) (1.53)

is worth mentioning that these results did not account for the potential time expenditure in data
communication among different data blocks.

Table 2: Average CPU time for each replication based on B = 500 replications for the split and
conquer (SaC), the Zhang’s SAVGM, the weighted distributed (WD), the debiased split and conquer
(dSaC) and the debiased weighted distributed (dWD) estimators for the logistic regression model
with respect to K. The dimension p2 of the nuisance parameter λk is 10 and total sample size
N = 2× 106

K SaC SAVGM WD dSaC dWD
10 34.60 35.19 43.84 50.47 55.35
50 20.13 20.18 24.16 29.99 33.69
100 15.60 16.20 17.74 23.63 24.47
250 10.77 12.61 11.88 18.22 20.39
500 11.55 14.50 12.56 18.80 23.73

1000 15.23 18.27 16.28 22.38 32.24
2000 23.42 27.99 24.62 30.43 48.05
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6.2 Real data analysis

In this sub-section, we report results from an empirical analysis on an airline’s on-time
performance data to demonstrate the proposed weighted distributed estimation for massive
data. We aim at quantifying the association between flight departure delay and a set
of covariates, the arrival delay of the previous flight of the same plane, the seasonal ef-
fects, and the weather conditions with a logistic regression model, based on data from the
top 10 busiest airports in the United States in 2007. The flight data are available from
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009 and the weather data are
obtained from https://cds.climate.copernicus.eu/. We segmented the full data of N = 2412782
according to the airports of departing flights and obtained 10 data segments. For each segment, we
split it to data blocks of size n = 5000, while the residual data blocks were discarded, such that the
total number of blocks K = 479.

We included seven covariates in the logistic regression: the arrival delay of the previous flight,
the season (encoded by three dummy variables: spring (March-May), summer (June-August), au-
tumn (September-November) with winter as the baseline, the near-surface air temperature and pres-
sure, and the rain rate before the scheduled departure time. The coefficients of the three weather
variables were treated as the common parameters while the remaining coefficients including the
intercept were regarded as heterogeneous; see Section C.3 in the supplementary material for the
justification. The estimated common parameters of the near-surface air pressure, temperature, and
convective rain rate with 95% confidence intervals using the weighted distributed estimator and the
split and conquer estimator are shown in Figure 2. Both methods successfully identified a signifi-
cant association between the three weather variables and the departure delay of a flight. Besides, the
weighted distributed estimator reduced the lengths of the confidence intervals of the estimated com-
mon parameters compared with the split and conquer method. In particular, the confidence interval
of the rain parameter was shortened by 19.1%, while those of the other two common parameters
were shorted by 2.2% (pressure) and 2.9% (temperature), which justified the statistical efficiency of
the weighted distributed estimator.

The data analysis demonstrated the feasibility of implementing the proposed weighted dis-
tributed estimation method for real-world distributed inference problems. With only one round
of weighting to tackle the heterogeneity among the nuisance parameters, more efficient estimation
can be obtained.

7. Discussion

This paper investigates distributed statistical optimization in the presence of heterogeneity in the
data blocks. The weighted distributed estimator is able to improve the estimation efficiency of the
split and conquer estimator for the common parameter. Two debiased estimators are proposed to
allow for larger numbers of data blocks K. The statistical properties of the proposed estimators
are shown to be advantageous over the split and conquer and SAVGM estimators. In particular,
the weighted distributed estimator has good performance for smaller K relative to n, and the debi-
ased weighted distributed estimator that conducted both bias correction and weighting offers good
estimation accuracy for large K.

An important issue for the distributed estimation is the size of K relative to the full sample size
N . This is especially true in a Federated Learning setting where the number of data blocks is usually
very large. Both the split and conquer and weighted distributed estimators require K = o(N1/2)
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Figure 2: Estimated common parameters of the near surface air pressure, temperature and convective
rain rate with 95% confidence intervals using the weighted distributed estimator and the split and
conquer estimator
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to preserve the the N1/2 rate for the asymptotic variance. The debiased weighted distributed and
debiased split and conquer estimators relax the restriction to K = o(N2/3) without sacrificing the
convergence rate.

In machine learning, the multi-task learning (Smith et al., 2017) framework is a strategy to tackle
the statistical heterogeneity in a distributed network, which fits separate local parameters {φk} ∈ Rp
to different data blocks (tasks) through convex loss functions {`k(·, ·)} and is formulated as

min
Φ,Ω

{ K∑
k=1

nk∑
i=1

`k(φ
T
kXk,i, Yk,i) +R(Φ,Ω)

}
, (16)

where Φ is the matrix with {φk}Kk=1 as column vectors, Ω ∈ RK×K and R(·, ·) measures the
extent of the heterogeneity among different data blocks. Choices of R(·, ·) include the bi-convex
function R(Φ,Ω) = δ1tr(ΦΩΦT ) + δ2‖Φ‖2F for δ1, δ2 > 0 and Ω = IK×K − (1/K)1K1TK such
that tr(ΦΩΦT ) =

∑K
k=1 ‖φk − φ̄K‖22 where φ̄K = (1/K)

∑K
k=1 φk, which leads to the mean-
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regularized multi-task learning (Evgeniou and Pontil, 2004) with R conducting regularization on
each local model.

The distributed framework in this paper is well connected to multi-task learning in two aspects.
One is that despite we use the same objective (loss) function M over the data blocks, the het-
erogeneity induced by local parameters {λk} and the distributions effectively define Mk(φ, x) =
M(x, φ, λk) is equivalent to the block specific loss functions `k used in (16). Another aspect is that
although multi-task learning assumes different parameters {φk} over the data blocks, it regularizes
them toward a common one. In contrast, we assume there is a common parameter φ shared by the
distributions. By doing so, we are able to clarify the source of heterogeneity {λk} and homogeneity
φ instead of putting an equal treatment on all the dimensions of the parameter and focusing on the
statistical inference of the common parameter.

Appendix

The Appendix is organized as follows. Section A provides derivations of the formulas given in the
main text. Section B contains detailed proofs of the theoretical results. More simulation results and
details about the real data analysis are reported in Section C.

A. Derivation of formulas

A.1 Expansion of the full sample estimator φ̂full
By integral form of Taylor’s expansion around the true value θ∗, we have

0p×1 = ΨN (X; φ̂full, λ̂1,full, ..., λ̂K,full)

= ΨN (X; θ∗) + J(θ∗)(θ̂full − θ∗) + (∇ΨN (X; θ∗)− J(θ∗))(θ̂full − θ∗)

+{
∫ 1

0
∇ΨN (X; θ∗ + t(θ̂full − θ∗))(θ̂full − θ∗)dt−∇ΨN (X; θ∗)}(θ̂full − θ∗),

where J(θ) = E (∇ΨN (X; θ)). Then, inverting the above leads to

θ̂full − θ∗ = −J(θ∗)−1ΨN (X; θ∗) +RN1 +RN2, (17)

where RN1 = −J(θ∗)−1{∇ΨN (X; θ∗) − J(θ∗)}(θ̂full − θ∗) and RN2 =

−J(θ∗)−1{
∫ 1

0 ∇ΨN (X; θ∗ + t(θ̂full − θ∗))(θ̂full − θ∗)dt − ∇ΨN (X; θ∗)}(θ̂full − θ∗) are
both higher-order remainder terms. Since J(θ) has the following form

J(θ) =


∑K

k=1 nkΨ
φ
φ(θk) n1Ψλ

φ(θ1) · · · nKΨλ
φ(θK)

n1Ψφ
λ(θ1) n1Ψλ

λ(θ1) 0 0
... 0

. . . 0

nKΨφ
λ(θK) 0 0 nKΨλ

λ(θK),

 , (18)

then the right bottom part of J(θ) is a block diagonal matrix, whose inverse is at
hand. Thus we can see J(θ) as a 2 × 2 block matrix and directly apply the block ma-
trix inverse formula (Lu and Shiou, 2002). Thus from (17) we have φ̂full − φ∗ =

−{
∑K

k=1(nk/N)Jφ|λ(θ∗k)}−1(1/N)
{∑K

k=1

∑nk
i=1 Sφ(Xk,i; θ

∗
k)
}

+ op(N
−1/2).
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A.2 Lipschitz continuity of the outer product of the gradient in logistic regression model

First we define the logit function logit(a) = exp(a)/(1 + exp(a)) for a ∈ R. Then the logistic
regression model can be defined as P (Y = 1|X) = logit(XTβ∗), where X,β∗ ∈ Rp. If we define
the objectiveM asM(z, β) = −ylog(logit(xTβ))+(y−1)log(1−logit(xTβ)), where z = (y, x),
then the outer product of gradient, denoted as f(z, β), is f(z, β) = (y − logit(xTβ))2xxT . Now
we have

‖f(z, β1)− f(z, β2)‖2
= ‖xxT (2y − logit(xTβ1)− logit(xTβ2))(logit(xTβ1)− logit(xTβ2))‖2
= ‖xxT (2y − logit(xTβ1)− logit(xTβ2))(1− logit(ξ))logit(ξ)x(β1 − β2)‖2
≤ ‖x‖32‖β1 − β2‖2,

where the second equality comes from an application of the mean value theorem.

A.3 Errors-in-variables model

We first give a derivation of the objective function from the perspective of statistical optimization.
As we will see, the derived objective is exactly the same as that when we do orthogonal regres-
sion or “Deming’s regression” (Carroll and Ruppert, 1996). Consider the conditional likelihood of
(Xk,i, Yk,i) given Zk,i in block k

f({Xk,i}, {Yk,i}|{Zk,i}, θk) =
n∏
i=1

f1(Xk,i|Zk,i)f2(Yk,i|Zk,i)

=(
1

2πσ2
)n

n∏
i=1

exp{− 1

2σ2

[
(X2

k,i + (Yk,i − φ)2)− 2Zk,i(Xk,i + λk(Yk,i − φ)) + (1 + λ2
k)Z

2
k,i

]
}.

By the factorization theorem, Xk,i + λk(Yk,i − φ) is a sufficient statistic for Zk,i if θk = (φ, λk) is
assumed to be known. And Xk,i + 2λk(Yk,i − φ)|Zk,i ∼ N ((1 + λ2

k)Zk,i, (1 + λ2
k)σ

2). Then, the
above conditional likelihood can be factorized as

f({Xk,i}, {Yk,i}|{Zk,i}, θk)

= (

√
1 + λ2

k√
2πσ

)n
n∏
i=1

exp{− 1

2σ2(1 + λ2
k)

(λkXk,i − (Yk,i − φ))2}h(Xk,i + λk(Yk,i − φ)|Zk,i),

where h(si|zi) is the conditional density of N ((1 + λ2
k)zi, (1 + λ2

k)σ
2). Since {Zk,i}ni=1

are not observable, we discard the factor h and construct the estimator based on the first
part of the factorization, which is denoted as f̃({Xk,i}, {Yk,i}|{Zk,i}, θk). Differentiate
log f̃({Xk,i}, {Yk,i}|{Zk,i}, θk) with respect to θk = (φ, λk)

T , we obtain


∂
∂φ logf̃({Xk,i}, {Yk,i}|{Zk,i}, θk) = − 1

σ2(1+λ2
k)

∑n
i=1(λkXk,i − (Yk,i − φ)),

∂
∂λk

logf̃({Xk,i}, {Yk,i}|{Zk,i}, θk) = n λk
1+λ2

k
+
∑n

i=1
λk

σ2(1+λ2
k)2 (λkXk,i − (Yk,i − φ))2

−
∑n

i=1
Xk,i

σ2(1+λ2
k)

(λkXk,i − (Yk,i − φ)).
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However,E
(
∇f̃({Xk,i}, {Yk,i}|{Zk,i}, θ∗k)

)
= (0, nλ∗k/(1+λ∗2k ))T 6= 02×1, thus a correction

term should be added to construct an appropriate objective function which satisfies the standard
first-order condition in statistical optimization framework:

Mn,k({Xk,i}, {Yk,i}|{Zk,i}, θk) = −logf̃({Xk,i}, {Yk,i}|{Zk,i}, θk) +
n

2
log(1 + λ2

k)

=
1

2σ2(1 + λ2
k)

n∑
i=1

(λkXk,i − (Yk,i − φ))2 + C(σ),

where C(σ) = nlog(
√

2πσ) is an absolute constant so we also discard it. The corresponding
M-function is

M(Xk, θk) =
1

2σ2(1 + λ2
k)

(λkXk − (Yk − φ))2. (19)

Below we check the identification of the true parameter under this objective function. We can
directly solve the population level first-order conditions (FOC) using E (∇M(Xk, Yk|Zk, θk)) =
02×1, which are given as

02×1 =

(
(1 + λ2

k)
(
(λk − λ∗k)E (Zk)− (φ∗ − φ)

)
(λkλ

∗
k + 1)(λk − λ∗k)E

(
Z2
k

)
− λk(φ− φ∗)2 + (φ− φ∗)(1 + 2λkλ

∗
k − λ2

k)E (Zk)

)
.

(20)
To solve the above set of equations, we consider the two scenarios. When EZk = 0, from the

first equation we obtain φ = φ∗, then the second equation reduces to C(λkλ
∗
k + 1)(λk−λ∗k)EZ2

k =
0. Since we have assumed λk, λ∗k > 0, we must have λk = λ∗k. When E (Zk) 6= 0, if λk 6= λ∗k we
would obtain E (Zk) = (φ∗ − φ)/(λk − λ∗k). Plugging it into the second equation of (20) and we
can obtain

(1 + λkλ
∗
k)

σ2(1 + λ2
k)

2(λk − λ∗k)

(
(λk − λ∗k)2EZ2

k − (φ− φ∗)2

)
= 0,

which is impossible unless Zk is degenerate, namely Zk = (φ∗−φ)(λk−λ∗k) with probability one.
This leads to a contradiction. Thus we must have λk = λ∗k. Again from the first equation of (20) we
will obtain that φ = φ∗. In summary, E∇M(Xk, Yk|Zk, θk) = 02×1 if and only if θk = θ∗k.

To give an explicit form of asymptotic variance of the estimator obtained from the M-function
(19), we can directly calculate the following two terms:

E
(
∇2M(Xk, Yk|Zk; θ∗k)

)
= E

 1
σ2(1+λ∗2k )

Xk
σ2(1+λ∗2k )

− 2λ∗k(λ∗kXk−(Yk−φ∗))
σ2(1+λ∗2k )2

Xk
σ2(1+λ∗2k )

− 2λ∗k(λ∗kXk−(Yk−φ∗))
σ2(1+λ∗2k )2

(3λ∗2k −1)(λ∗kXk−(Yk−φ∗))2

σ2(1+λ∗2k )3 − 4λ∗kXk(λ∗kXk−(Yk−φ∗))
σ2(1+λ∗2k )2 +

X2
k

σ2(1+λ∗2k )


=

1

σ2(1 + λ∗2k )

(
1 EZk

EZk EZ2
k

)
and

E
(
∇M(Xk, Yk|Zk, θ∗k)(∇M(Xk, Yk|Zk, θ∗k))T

)
=

 1
σ2(1+λ∗2k )

EZk
σ2(1+λ∗2k )

EZk
σ2(1+λ∗2k )

EZ2
k

σ2(1+λ∗2k )
+ 1

(1+λ∗2k )2

 =
1

σ2(1 + λ∗2k )

(
1 EZk

EZk EZ2
k + σ2

1+λ∗2k

)
.
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Thus we have

Jφ|λ(θ∗k) =
1

σ2(1 + λ∗2k )
(1− (EZk)

2

EZ2
k

) =
1

σ2(1 + λ∗2k )

V ar(Zk)

EZ2
k

and

V ar(Sφ) =
(

1 −EZk
EZ2

k

) 1

σ2(1 + λ∗2k )

(
1 EZk

EZk EZ2
k + σ2

1+λ∗2k

)(
1

−EZk
EZ2

k

)

=
1

σ2(1 + λ∗2k )

{
V ar(Zk)

EZ2
k

+
σ2

1 + λ∗2k

(EZk)
2

(EZ2
k)2

}
,

which leads to the Equation (8) in the main text.

A.4 Equivalent variance minimization formulations of the weighted estimators

For simplicity, we assume that n1 = n2 = · · · = nK = n. We claim that the following two
formulations of the variance minimization problem have identical solution.

Formulation 1: Trace Operator

Minimize
Wk

tr

( K∑
k=1

WkHkW
T
k

)
, s.t.

K∑
k=1

Wk = Ip1 . (21)

Formulation 2: Frobenius Norm

Minimize
Wk

‖
K∑
k=1

WkHkW
T
k ‖F , s.t.

K∑
k=1

Wk = Ip1 . (22)

Proof We solve problem (21) first. The Lagrangian of this problem is L̃1 =

tr

(∑K
k=1WkHkW

T
k

)
+ < Λ1,

∑K
k=1Wk − Ip1 >, where Λ1 ∈ Rp1×p1 is the corresponding

Lagrangian multiplier. If we take derivative of L̃1 w.r.t. Wk we can obtain 2WkHk + Λ1 =
0, k = 1, 2, · · · ,K. Then Wk = −1

2Λ1H
−1
k . Using the constraint

∑K
k=1Wk = Ip1 , we can

obtain Λ∗1 = −2(
∑K

s=1A
−1
s )−1 and W ∗k = (

∑K
s=1A

−1
s )−1A−1

k . Now we turn to solve the problem
(22). Equivalently we can minimize the square of the Frobenius norm, and the corresponding La-
grangian is L̃2 = ‖

∑K
k=1WkHkW

T
k ‖2F+ < Λ2,

∑K
k=1Wk−Ip1 >. Taking derivative w.r.t. Wk we

can obtain 4(
∑K

s=1WsAsW
T
s )WkAk + Λ2 = 0. Now we can use the constraint

∑K
k=1Wk = Ip1

and get Λ∗2 = −4(
∑K

s=1WsAsW
T
s )(
∑K

s=1A
−1
s )−1 and W ∗k = (

∑K
s=1A

−1
s )−1A−1

k .

A.5 Second-order Bartlett’s indentity under QMLE

For the quasi maximum likelihood estimation (QMLE), we only check that the second order
Bartlett’s identity holds for independent observarions. Suppose that the components of the response
vector Y are independent with mean vector µ and covariance matrix σ2V (µ), where σ2 maybe un-
known and V (µ) is a matrix of known functions. It is assumed that the parameters of interest, θ, is
a function of µ. By independence of the components of Y and the physical mechanism plausibility,
it is reasonable to assume further that Vi(µ) depends on µ only through µi, which implies that

V (µ) = diag{V1(µ1), V2(µ2), · · · , Vn(µn)}.
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For a single observation Y , we can construct the score function as U = u(µ;Y ) = (Y −
µ)/(σ2V (µ)). Then the corresponding objective function can be defined as

Q(µ; y) = −
∫ µ

y

y − t
σ2V (t)

dt, (23)

which behaves like a negative log-likelihood: E (∇µQ) = 0, V ar(∇µQ) = E(∇2
µQ) =

1/{σ2V (µ)}. We refer to Q(µ; y) as the negative quasi-likelihood (McCullagh, 1983), or more
precisely the negative log quasi-likelihood for µ based on data y. By independence, the nega-
tive quasi-likelihood for the complete data is the sum of the individual contributions: Q(µ; y) =∑n

i=1Q(µi; yi). The quasi-likelihood estimating equations for the regression parameters θ, obtained
by differentiatingQ(µ; y), can be written in the form U(θ̂) = 0, where U(θ) = −DV −1(Y −µ)/σ2

is called the quasi-score function. The components of D, of order n × p, are Dir = ∂µi/∂θr, the
derivatives of µ(θ) with respect to the parameters. Suppose the true parameters are θ∗ and µ∗, then
by the zero-mean of U(θ∗), we have

CoV{U(θ∗)} = E
(
U(θ∗)U(θ∗)T

)
= DTV −1D/σ2 and

E

(
∂U

∂θT
(θ∗)

)
= E{DTV −1 ∂µ

∂θT
/σ2 +

∂DTV −1

∂θT
Y − µ∗

σ2
} = DTV −1D/σ2.

A.6 Generalized second-order Bartlett’s identity for parametric regression

Suppose that we observe a random sample (X1, Y1), (X2, Y2), · · · , (Xn, Yn), which follows

Y = fθ∗(X) + e, E(e|X) = 0, V ar(e|X) = σ2(X), X ∼ p(x).

Then the objective function for the least square estimation is M(Z, θ) = (Y − fθ(X))2 with Z =
(X,Y ). Note that

E (M(Z, θ)) = E(fθ(X)− fθ∗(X))2 + Ee2 ≈ E (M(Z, θ∗)) + E((θ − θ∗)T∇fθ∗(X))2, (24)

which suggests that ∇2
θM(θ∗) = 2E∇fθ∗(X)∇fθ∗(X)T where M(θ) = EM(Z, θ). For the

approximation (24), see van der Vaart (1999). If we assume the independence between e and X ,
which implies V ar(e) = σ2, thenE

(
∇M(Z, θ∗)∇M(Z, θ∗)T = 4σ2E∇fθ∗(X)∇fθ∗(X)T

)
with

the multiplicative factor γ for the generalized second-order Bartlett’s identity being 4σ2.

A.7 GMM formulation of the full sample statistical optimization under heterogeneity

It is noted that W0 admits the following form

W0 =


V ar{ψθ1(X1,1;φ∗, λ∗1)}−1 0 · · · 0

0 V ar{ψθ2(X2,1;φ∗, λ∗2)}−1 0
...

. . .
0 0 V ar{ψθK (XK,1;φ∗, λ∗K)}−1

 .
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Thus, W0 is a block diagonal matrix. Also note that

GT0 = E{∂ψ̃
T
N (θ∗)

∂θ
}

= E


ψφφ(X1,i;φ

∗, λ∗1) ψλφ(X1,i;φ
∗, λ∗1) · · · · · · ψφφ(XK,i;φ

∗, λ∗K) ψλφ(XK,i;φ
∗, λ∗K)

ψφλ(X1,i;φ
∗, λ∗1) ψλλ(X1,i;φ

∗, λ∗1) 0 0 · · · 0

0 0 ψφλ(X2,i;φ
∗, λ∗2) ψλλ(X2,i;φ

∗, λ∗2) · · · 0
...

...
...

...
. . .

...
0 0 0 0 ψφλ(XK,i;φ

∗, λ∗K) ψλλ(XK,i;φ
∗, λ∗K)

 ,

then the asymptotic variance of the GMM estimtator (Hansen, 1982) is AsyV Ar(θ̂GMM ) =
(GT0 W0G0)−1 and has the following form:



∑K
k=1 nkDΨφ(θ∗k)

TΣ−1
S,kDΨφ(θk) n1DΨφ(θ∗1)TΣ−1

S,1DΨλ(θ∗1) · · · · · · nKDΨφ(θ∗K)TΣ−1
S,KDΨλ(θ∗K)

n1DΨλ(θ∗1)TΣ−1
S,1DΨφ(θ∗1) n1DΨλ(θ∗1)TΣ−1

S,1DΨλ(θ∗1) 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0

nKDΨλ(θ∗K)TΣ−1
S,KDΨφ(θ∗K) 0 · · · 0 nKDΨλ(θ∗K)TΣ−1

S,KDΨλ(θ∗K)



−1

,

where

DΨφ(θk)
T =

(
Ψφ
φ(θk) Ψλ

φ(θk)
)
, DΨλ(θk)

T =
(

Ψφ
λ(θk) Ψλ

λ(θk)
)

and ΣS,k = V ar{ψθk(Xk,1;φ∗, λ∗k)}.

By the inversion of block matrix, AsyV ar(φ̂GMM )−1 has the following form:

K∑
k=1

nk

{
DΨφ(θ∗k)TΣ−1

S,kDΨφ(θ∗k)−DΨφ(θ∗k)TΣ−1
S,kDΨλ(θ∗k)

(
DΨλ(θ∗k)TΣ−1

S,kDΨλ(θ∗k)

)−1

DΨλ(θ∗k)TΣ−1
S,kDΨφ(θ∗k)

}
.

If we denote the elements in the above summation as nkUk, then it is straightforward to verify that

(
U−1
k ∗
∗ ∗

)
=

{(
DΨφ(θ∗k)

T

DΨλ(θ∗k)
T

)
ΣS,k

(
DΨφ(θ∗k) DΨλ(θ∗k)

)}−1

,

namely, the inverse of Uk is the left top part of the inverse of a bigger matrix in the RHS of the
above equation, from which we are able to obtain the simplified expression of Uk:

Uk =

{
J−1
φ|λ
(
Ip1×p1 −Ψλ

φ(θ∗k)Ψ
λ
λ(θ∗k)

−1
)

ΣS,k

(
Ip1×p1

−Ψλ
λ(θ∗k)

−1Ψφ
λ(θ∗k)

)
J−1
φ|λ∗k

}−1

= Jφ|λΣ−1
k Jφ|λ.

Now we conclude that AsyV ar(φ̂GMM ) =
(∑K

k=1 Jφ|λΣ−1
k Jφ|λ

)−1
, which is the same as that of

the WD estimator φ̂WD.
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A.8 Asymptotic efficiency comparison of λ̂k and λ̂(2)
k

Theorem 9 Under the conditions required in Theorem 4, ifK →∞, then for the updated estimator
λ̂

(2)
k , we have that

√
nk(λ̂

(2)
k − λ

∗
k)

d→ N (0,Ψλ
λ(θ∗k)

−1Eψλ(Xk,1; θ∗k)ψλ(Xk,1; θ∗k)
TΨλ

λ(θ∗k)
−1). (25)

Hence, the asymptotic distribution of λ̂(2)
k is the same as that of the estimator of λ∗k obtained

when the common parameter φ∗ is known. It is noted that the joint asymptotic distribution for the
estimator θ̂k = (φ̂Tk , λ̂

T
k )T is

√
nk(θ̂k − θ∗k)

d→ N (0,Ψθ
θ(θ
∗
k)
−1Eψθk(Xk,1; θ∗k)ψθk(Xk,1; θ∗k)

TΨθ
θ(θ
∗
k)
−1),

which leads to

√
nk(λ̂k − λ∗k)

d→ N (0, Jλ|φ(θ∗k)
−1V ar(Sφ(Xk,1; θ∗k))Jλ|φ(θ∗k)

−1). (26)

There is not a definite order on the relative efficiency between λ̂k and λ̂(2)
k by comparing the two

asymptotic variances in (25) and (26), suggesting it would depend on the specific M function and
the model setting. For general statistical optimization, a known nuisance parameter (here φ∗) does
not necessarily improve the efficiency of a parameter of interest Yuan and Jennrich (2000); Henmi
and Eguchi (2004), which is the case for the current setting. Consider again the errors-in-variables
model where it can be shown that

V ar(λ̂
(2)
k ) ≈ σ4

(V ar(Zk))2

1

nk
and V ar(λ̂k) ≈

(
σ4

(E(Z2
k))2

+
σ2(1 + λ2

k)

E(Z2
k)

)
1

nk
.

When E (Zk) = 0, i.e. V ar(Zk) = E(Z2
k), the updated estimator λ̂(2)

k is more efficient, and the
efficiency gain gets large as λ2

k increases. However, if E (Zk) has a large absolute magnitude, λ̂k
can be more efficient than λ̂(2)

k . Moreover, the requirement in Theorem 9 that K →∞ is to obtain
a succinct asymptotic variance of λ̂(2)

k . The above conclusion does not change for the fixed K
case. Consider block 1, we assume λ̂(2)

1
p→ λ∗1 and φ̂WD is

√
n1− consistent (detailed proofs of

both claims are available in the next section). Then by Theorem 1 in Yuan and Jennrich (2000), if
√
n1

(
1
n1

∑n1
i=1 ψλ(X1,i; θ

∗
1) + Ψφ

λ(θ∗1)(φ̂WD − φ∗)
) d→ N (0, Q), we will have

√
n1(λ̂

(2)
1 − λ∗1)

d→
N (0,Ω) where Ω = Ψλ

λ(θ∗1)−1QΨλ
λ(θ∗1)−1. Denote Tn,K =

√
nΨλ

λ(θ∗1)−1
(

1
n

∑n
i=1 ψλ(X1,i; θ

∗
1) +

Ψφ
λ(θ∗1)(φ̂WD − φ∗)

)
, then Tn,K should have the same asymptotic distribution as

√
n(λ̂

(2)
1 − λ∗1).

So, we study the limiting behavior of Tn,K for simplicity. Consider the homogeneous scenario as a
special case when θ∗1 = θ∗2 = · · · = θ∗K , n1 = n2 = · · · = nK = n, then the optimal weights are
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W ∗1 = W ∗2 = · · · = W ∗K = 1
K Ip1×p1 . Now we have

Tn,K =
1√
n

Ψλ
λ(θ∗1)−1

( n∑
i=1

ψλ(X1,i; θ
∗
1)−Ψφ

λ(θ∗1)
K∑
k=1

1

K
(φ̂k − φ∗)

)
=

1√
n

Ψλ
λ(θ∗1)−1

( n∑
i=1

ψλ(X1,i; θ
∗
1)−Ψφ

λ(θ∗1)
K∑
k=1

1

K

n∑
i=1

J−1
φ|λSφ(Xk,i; θ

∗
k)
)

+ op(1)

=
(

(1− 1
K )Ψλ

λ(θ∗1)−1Ψφ
λ(θ∗1) Ip2×p2

)
∇2M1(θ∗1)−1 1√

n

n∑
i=1

(
ψφ(X1,i; θ

∗
1)

ψλ(X1,i; θ
∗
1)

)

−Ψλ
λ(θ∗1)−1Ψφ

λ(θ∗1)
1√
n

1

K

K∑
k=2

n∑
i=1

J−1
φ|λSφ(Xk,i; θ

∗
k) + op(1)

∆
= T

(1)
n,k + op(1).

We can verify that V ar(T (1)
n,k) = (1− 1

K )Ψλ
λ(θ∗1)−1V ar(ψλ(X1,1; θ∗1))Ψλ

λ(θ∗1)−1 + n
KAsyV ar(λ̂1),

or equivalently, AsyV ar(λ̂
(2)
1 ) ≈ (1 − 1

K )Ψλ
λ(θ∗1)−1V ar(ψλ(X1,1; θ∗1))Ψλ

λ(θ∗1)−1 1
n +

1
KAsyV ar(λ̂1). Thus AsyV ar(λ̂(2)

1 ) � AsyV ar(λ̂1) if and only if

Ψλ
λ(θ∗1)−1V ar(ψλ(X1,1, θ

∗
1))Ψλ

λ(θ∗1)−1/n � AsyV ar(λ̂1). (27)

The LHS of inequality (27) is the asymptotic variance of the estimator of λ∗1 if φ∗1 is known and RHS
is the asymptotic variance of estimator of λ∗1 when we jointly estimate (φ∗T1 , λ∗T1 )T . Henmi and
Eguchi (2004) showed that the inequality does not always hold for general statistical optimization
problem and derived a sufficient condition under which a known nuisance parameter (φ∗) will lead
to a bigger asymptotic variance of the estimator of the parameter of interest (λ∗1).

A.9 Bias correction for statistical optimization under logistic regression model

Given observations {(yi, Xi)}ni=1, we now construct B̂(β). Denote y = (y1, y2, · · · , yn)T , X =

(X1, X2, · · · , Xn)T and ŷ = (ŷ1, ŷ2, · · · , ŷn) with ŷi = logit(xTi β). Since dj

daj
logit(a) =

logit(a)
∏j
s=1(1− logit(a)s), then we have∇Mn(β) = 1

nX
T (ŷ− y),∇2Mn(β) = 1

nX
Tdiag{ŷ ·

(1 − ŷ)}X and ∇3Mn(β) = 1
n

∑n
i=1 ŷi(1 − ŷi)(1 − 2ŷi)xivec(xi ⊗ xi)

T , where · denotes the
element-wise product of two vectors and vec is the vectorization operator. Then, the bias-correction
formula is a combination of the gradients up to the third order.

A.10 Comparison with a one-step estimator

Huang and Huo (2019), also under the same homogeneous setting, considered to utilize the second
order information of the M -function to allow for a larger K. They proposed a one-step estimator
which aggregates the local Hessian matrices and gradients and performs a single Newton-Raphson
updating. The estimator, denoted as θ̂(1), has a MSE upper bound

E
(
‖θ̂(1) − θ∗1‖22

)
≤

2E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

N2
+
C2

n4
. (28)

Thus, this method allows for K = o(n3), while still preserves the O(N−1) convergence rate. The
price of this procedure is one extra round of transmission of the local Hessians and gradients. To
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mitigate the communication burden, they considered to use only one local Hessian matrix instead
of the averaged one. Let θ̂(1)

LH be the estimator. They showed that

E
(
‖θ̂(1)
LH − θ

∗
1‖22
)
≤

2E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

n2K
+
C2

n3
, (29)

which is similar to the MSE bound of the dSaC estimator in Corollary 8. However, both θ̂(1)

and θ̂(1)
LH are not readily extended to the heterogeneous setting, as the one-step update procedure

relies crucially on the N1/2−consistency of the initial estimators of all the unknown parameters
(van der Vaart, 1999), but the convergence rate of the block-specific estimators λ̂k are only of order
Op(n1/2

k ).

B. Proofs

Without loss of generality, we assume equal sample size n in each data block. Besides, unless
otherwise stated, we will use C, ci and Ci to denote positive constants independent of (nk,K,N),
and the same Ci can have different values from one context to another.

B.1 Lemmas

Before presenting the proofs of the theoretical results established in the main paper, we first establish
some technical lemmas in the following sub-section.

Lemma B.1 SupposeH andK are positive definite matrices of order p, andX and Y are arbitrary
p×m matrices. Then, Q = XTH−1X + Y TK−1Y − (X + Y )T (H +K)−1(X + Y ) � 0.

Proof Let A and B be defined as follows

A =

(
H X
XT XTH−1X

)
, B =

(
K Y
Y T Y TK−1Y

)
Since H,K are positive definite, we can directly check that A,B are positive semi-definite. Thus
A + B is also positive semi-definite, and the conclusion follows. See Ando (1979); Haynsworth
(1970) for more similar types of matrix inequalities.

Lemma B.2 Under Assumptions 1 - 4 and Assumptions 5 - 6 with v2 = min{v, v1} ≥ 1, if K =
o(nv2), then

sup
1≤k≤K

‖θ̂k − θ∗k‖2
P→ 0.

Proof Let Gn,k = 1
n

∑n
i=1Gk(Xk,i) and δρ = min{ρ, ρρ−/4G}. For k = 1, ...,K, define the

following “good events”:

Ek = {Gn,k ≤ 2G, ‖∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖2 ≤

ρρ−
2
, ‖∇θkMn,k(θ

∗
k)‖2 ≤

(1− ρ)ρ−δρ
2

}.

Then by Lemma 6 in Zhang et al. (2013), we obtain that under the event ∩Kk=1Ek,

‖θ̂k − θ∗k‖2 ≤
2‖∇θkMn,k(θ

∗
k)‖2

(1− ρ)ρ−
.
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Similar to the proof of Lemma C.1 in Jordan et al. (2019), there exist constants c1, c2, c3 independent
of (n,K, d,G, L) such that P (∪Kk=1Eck) ≤ (c1 + c2(log2d)2vL2v + c3R

2v)Knv . For any ε > 0

and k ≤ K, we define events E ′k = {‖∇θkMn,k(θ
∗
k)‖2 ≤ (1 − ρ)ρ−ε/2}. Then by Markov’s

inequality and the union bound, there exist constants c4 such that P (∪Kk=1E
′c
k ) ≤ c4KL

2v/nv2 .

Thus, P ( sup
1≤k≤K

‖θ̂k− θ∗k‖ > ε) = O( K
nv2 ), implying that sup

1≤k≤n
‖θ̂k− θ∗k‖2

P→ 0 for K = o(nv2).

Lemma B.3 Inv(A) : GL(Rp) → GL(Rp) : A 7→ A−1 is Lipschitz continuous at any A ∈
GL(Rp), where GL(Rp) consists of all p× p invertible matrices of real numbers.

Proof Let A0 ∈ GL(Rp) be given. Denote 1/‖A−1
0 ‖2 = δ > 0. It follows that for all x ∈ Rp we

have ‖x‖2 = ‖A−1
0 A0x‖2 ≤ (1/δ)‖A0x‖2, namely ‖A0x‖2 ≥ δ‖x‖2. Assume that ‖A− A0‖2 <

δ/2, then ‖Ax‖2 ≥ ‖A0x‖2 − ‖(A − A0)x‖2 ≥ δ
2‖x‖2, which means A−1 exists and ‖A−1‖2 ≤

2/δ. Since A−1 − A−1
0 = A−1(A0 − A)A−1

0 , ‖A−1 − A−1
0 ‖2 ≤ ‖A−1‖2‖A0 − A‖2‖A−1

0 ‖2 ≤
(2/δ2)‖A−A0‖2, which completes the proof.

Lemma B.4 Under Assumptions 1 - 4 and 7, and Assumptions 5 - 6 for v, v1 ≥ 2, if K = o(n),

{nk
K∑
k=1

Hk(θ
∗
k)
−1(φ̂k − φ∗)}T {

K∑
k=1

nkHk(θ
∗
k)
−1}−1{

K∑
k=1

nkHk(θ
∗
k)
−1(φ̂k − φ∗)}

d→ χ2
p1
.

Proof We prove for the case when K → ∞, and the proof for the fixed K case is straightfor-
ward to derive. Denote T1 = { 1

K

∑K
s=1Hs(θ

∗
s)
−1}−1 1

K

∑K
k=1Hk(θ

∗
k)
−1(φ̂k − φ∗), Jk(θk) =

E∇2
θk
M(Xk,1; θk). Lemma B.2 has shown that P (∩Kk=1Ek) = 1 − O(K/nv2), where v2 =

min{v, v1}. And since all the smoothness conditions in Assumptions 5 - 6 only holds lo-
cally, namely in the Uρ ball, so all the expansions hold only under the event ∩Kk=1Ek. When
K = o(1/nv2), P (∩Kk=1Ek) → 1 and thus T1 = T1I(∩Kk=1Ek) + op(1). Then by Slutsky’s lemma
it is equivalent to obtain the asymptotic distribution of T1I(∩Kk=1Ek). In the following proof, we
assume the event ∩Kk=1Ek holds. By the integral form of Taylor’s expansion of∇θkMn,k(θk) around
the true parameter θ∗k, we have

θ̂k − θ∗k = −Jk(θ∗k)−1∇θkMn,k(θ
∗
k) +R(k)

n , (30)

where R(k)
n = R

(k)
n,1 +R

(k)
n,2,

R
(k)
n,1 = −Jk(θ∗k)−1{∇2

θk
Mn,k(θ

∗
k)− Jk(θ∗k)}(θ̂k − θ∗k) and

R
(k)
n,2 = −Jk(θ∗k)−1{

∫ 1

0
∇2
θk
Mn,k(θ

∗
k + t(θ̂k − θ∗k))dt−∇2

θk
Mn,k(θ

∗
k)}(θ̂k − θ∗k)

for each k. Recall the definition of Jφ|λ and Sφ(Xk,i; θk), if we denote

T
′
1 = −{ 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−1 1√

N

K∑
k=1

n∑
i=1

Hk(θ
∗
k)
−1Jφ|λ(θ∗k)

−1Sφ(Xk,i; θ
∗
k) +R1 +R2, (31)

then T1 = T
′
1I(∩Kk=1Ek) + T1(1 − I(∩Kk=1Ek)) = T

′
1 + (T1 + T

′
1)(1 − I(∩Kk=1Ek)).

When K = o(nv2), we can directly show that (T1 + T
′
1)(1 − I(∩Kk=1Ek)) = op(1),
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so as long as we can show the asymptotic normality of T
′
1, by applying Slutsky’s lemma

we can also show the asymptotic normality of T1. The explicit expressions of R1, R2

and their asymptotic properties will be investigated after we establish the asymptotic nor-
mality of T1,0 = −{ 1

K

∑K
s=1Hk(θ

∗
s)
−1}−1 1√

N

∑K
k=1

∑n
i=1Hk(θ

∗
k)
−1Jφ|λ(θ∗k)

−1Sφ(Xk,i; θ
∗
k).

Here we apply the Cramer-Wold device to reduce the problem into a scalar case. Since
(1/K)

∑K
s=1Hs(θ

∗
s)
−1 may not converge as K → ∞ in the presence of heterogeneity, we

turn to establish the asymptotic normality of the standardized version of T1,0, which is T1,1 =

−{ 1
K

∑K
s=1Hs(θ

∗
s)
−1}−1/2 1√

N

∑K
k=1

∑n
i=1Hk(θ

∗
k)
−1Jφ|λ(θ∗k)

−1Sφ(Xk,i; θ
∗
k). For any non-zero

l ∈ Rp1 , let lTk = −lT { 1
K

∑K
s=1Hk(θ

∗
s)
−1}−1/2Pk, where

Pk = Hk(θ
∗
k)
−1Jφ|λ(θ∗k)

−1
(
Ip1×p1 −Ψλ

φ(θ∗k)Ψ
λ
λ(θ∗k)

−1
)
. (32)

Then lTT1,1 = N−1/2
∑K

k=1

∑n
i=1 l

T
k ψθk(Xk,i; θ

∗
k). If we denote ZK,k =

N−1/2
∑n

i=1 l
T
k ψθk(Xk,i; θ

∗
k), then lTT1,1 =

∑K
k=1 ZK,k and E (ZK,k) = 0. Below we

check the Lindeberg conditions. First,
∑K

k=1EZ
2
K,k = lT l = σ2

l > 0. Second, for any ε > 0,

K∑
k=1

E(|ZK,k|2; |ZK,k| > ε) =

K∑
k=1

E(|ZK,k|2I{|ZK,k|>ε})

= 2
K∑
k=1

(

∫ ε

0
+

∫ ∞
ε

)tP (|ZK,kI{|ZK,k|>ε}| > t)dt

= ε2
K∑
k=1

P (|ZK,k| > ε) + 2
K∑
k=1

∫ ∞
ε

tP (|ZK,k| > t)dt,

where the second equality comes from the tail-sum formula for expectations of absolute moments.
Using Chebyshev’s inequality and Marcinkiewicz-Zygmund inequality with b3 being the corre-
sponding constant, we can show that

K∑
k=1

P (|ZK,k| > ε) =
K∑
k=1

P (| 1√
n

n∑
i=1

lTk ψθk(Xk,i; θ
∗
k)| > ε

√
K) ≤ b3

ε3K3/2

K∑
k=1

‖lk‖32E
(
‖ψθk(Xk,1; θ∗k)‖32

)
,

Recall the definition of lk, then we can use the boundedness of Hk(θ
∗
k) and ∇2

θk
Mk(θ

∗
k) to show

that ‖lk‖2 ≤ C‖l‖2. Thus we have that

K∑
k=1

P (|ZK,k| > ε) ≤ b3C

ε3K3/2
‖l‖2K max

1≤k≤K
E
(
‖ψθk(Xk,1; θ∗k)‖32

)
= cε

max
1≤k≤K

E
(
‖ψθk(Xk,1; θ∗k)‖32

)
√
K

→ 0.

Now we consider the second part, namely
∑K

k=1

∫∞
ε tP (|ZK,k| > t)dt. Note

K∑
k=1

∫ ∞
ε

tP (|ZK,k| > t)dt =

K∑
k=1

∫ ∞
ε

tP (| 1√
n

n∑
i=1

lTk ψθk(Xk,i; θ
∗
k)| > t

√
K)dt

u=t
√
K

≤ c max
1≤k≤K

E‖ψθk(Xk,1; θ∗k)‖32
K∑
k=1

1

K

∫ ∞
ε
√
K

1

u2
du ≤ c′

max
1≤k≤K

E‖ψθk(Xk,1; θ∗k)‖32
√
K

→ 0.
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Thus we conclude that T1,1
d→ N (0, Ip1×p1). Now we consider the remainder term R2. We first

give the explicit expression ofR2: R2 = −( 1
K

∑K
k=1Hk(θ

∗
k)
−1)−1

√
n
K

∑K
k=1 Pk{∇2

θk
Mn,k(θ

∗
k)−

Jk(θ
∗
k)}(θ̂k − θ∗k). Since ‖ 1

K

∑K
k=1Hk(θ

∗
k)
−1‖2 is bounded, we only need to show R2,1

∆
=

{ 1
K

∑K
k=1Hk(θ

∗
k)
−1}R2 = op(1). Since ‖R2,1‖2 ≤

√
K
n

1
K

∑K
k=1 ‖Pk‖2‖

√
n{∇2

θk
Mn,k(θ

∗
k) −

Jk(θ
∗
k)}‖2‖

√
n(θ̂k − θ∗k)‖2, by Markov’s inequality and Hölder’s inequality, we will have

P (‖R2,1‖ ≥ ε) ≤ C1

√
K

n

1

K

K∑
k=1

√
E
(
‖
√
n{∇2

θk
Mn,k(θ

∗
k)− Jk(θ∗k)}‖22

)
E
(
‖
√
n(θ̂k − θ∗k)‖22

)
.

From Lemma 7 of Zhang et al. (2013) and Assumption 5 with v ≥ 1, we know that
E
(
‖
√
n{∇2

θk
Mn,k(θ

∗
k)− Jk(θ∗k)}‖22

)
≤ C. On the other hand, by Lemma 6 of Zhang et al.

(2013) and using the event Ek we can show that E
(
‖
√
n(θ̂k − θ∗k)‖22

)
≤ C1. Now since

K = o(N1/2) = o(n), we conclude that R2 = op(1). Then we control R1, which is

−(
1

K

K∑
k=1

Hk(θ
∗
k)
−1)−1

√
n

K

K∑
k=1

Pk{
∫ 1

0
∇2
θk
Mn,k(θ

∗
k + t(θ̂k − θ∗k))dt−∇2

θk
Mn,k(θ

∗
k)}(θ̂k − θ∗k),

where Pk is defined in (32). Now with K = o(n), we can similarly prove that ‖R1,1‖2 = op(1).

Lemma B.5 Under the same conditions required by Lemma B.4, the following term is asymptoti-
cally negligible (i.e. op(1)):

√
N
( K∑
k=1

{
K∑
s=1

nsĤs(θ̂s)
−1}−1nkĤk(θ̂k)

−1(φ̂k−φ∗)−
K∑
k=1

{
K∑
s=1

nsHs(θ
∗
s)
−1}−1nkHk(θ

∗
k)
−1(φ̂k−φ∗)

)
.

Proof Denote the LHS of the above equation as T2, then we have

‖T2‖2

≤
√
K

n

(
‖{ 1

K

K∑
s=1

Ĥs(θ̂s)
−1}−1‖2

1

K

K∑
k=1

‖
√
n(Ĥk(θ̂k)

−1 −Hk(θ
∗
k)
−1)‖2‖

√
n(φ̂k − φ∗)‖2

+
1

K

K∑
k=1

‖Hk(θ
∗
k)
−1‖2‖

√
n
(
{ 1

K

K∑
s=1

Ĥs(θ̂s)
−1}−1 − { 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−1

)
‖2‖
√
n(φ̂k − φ∗)‖2

)
:=

√
K

n
(T

(1)
2,1 + T

(2)
2,1 ).

Since K = o(n), it suffices to show T
(1)
2,1 and T (2)

2,1 are both Op(1). Under the event AK defined

in Equation (51), we have T (2)
2,1 I(AK) ≤ C

K

∑K
k=1

(
√
n‖Σ̂S,k(θ

∗
k) − ΣS,k(θ

∗
k)‖2 +

√
n‖L̂k(θ∗k) −

Lk(θ
∗
k)‖2 + ‖

√
n(θ̂k − θ∗k)‖2

)
‖
√
n(θ̂k − θ∗k)‖2. Thus for v ≥ 1, v1 ≥ 2, by Markov’s inequality
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and Cauchy’s inequality we have

P (T
(2)
2,1 > 1,AK) ≤ n max

1≤k≤K

(
C1

√
E
(
|Σ̂S,k(θ

∗
k)− ΣS,k(θ

∗
k)‖22

)
E
(
‖θ̂k − θ∗k‖22

)
+C2

√
E
(
‖L̂k(θ∗k)− Lk(θ∗k)‖22

)
E
(
‖θ̂k − θ∗k‖22

)
+ C

′
3E
(
‖θ̂k − θ∗k‖22

))
= O(1).

Since we have shown P (AK)→ 1 if K = o(nv̄) with v̄ = min{v, v1
2 }, and we have assumed that

K = o(n) , we can conclude that T (2)
2,1 = Op(1). We can similarly show that T (1)

2,1 = Op(1). Now
we complete the proof.

Lemma B.6 Under Assumptions 1 - 4 and 7 - 8, and Assumption5 with v, v1 ≥ 2 ,

E‖θ̂k − θ∗k − n−1
k Bk(θ

∗
k)‖22 ≤

2E‖{∇θkΨθ(θ
∗
k)}−1ψθk(Xk,1; θ∗k)‖22
nk

+
C1

n2
k

.

Proof By the expansion (30) of θ̂k − θ∗k, we have that

E‖θ̂k − θ∗k −
1

n
Bk(θ

∗
k)‖22 = E‖(−Jk(θ∗k)−1∇θkMn,k(θ

∗
k) +R(k)

n )I(Ek)−
1

n
Bk(θ

∗
k) + (θ̂k − θ∗k)I(ECk )‖22

≤ 2E‖Jk(θ∗k)−1∇θkMn,k(θ
∗
k)‖22 + 2E‖R(k)

n I(Ek)−
1

n
Bk(θ

∗
k) + (θ̂k − θ∗k)I(ECk )‖22

≤
2E‖Jk(θ∗k)−1∇θkM(Xk,1; θ∗k)‖22

n
+ C1E‖R(k)

n ‖22 +
C2

n2
‖Bk(θ∗k)‖22 + C3E‖(θ̂k − θ∗k)I(ECk )‖22.

We have shown that E‖R(k)
n ‖22 = O( 1

n2 ). For the boundedness of ‖Bk(θ∗k)‖2, see the proof of
Lemma B.9. Besides, we have from Lemma B.2 that

E‖(θ̂k − θ∗k)I(ECk )‖22 ≤
√
E‖θ̂k − θ∗k‖42P (ECk )

≤ 1

nv2/2

√
2E‖(θ̂k − θ∗k)I(Ek)‖42 + 2E‖(θ̂k − θ∗k)I(ECk )‖42

≤ 1

nv2/2

√
C1

n2
+
C2

nv2
= O(

1

n2
)

Lemma B.7 Let A1, A2, · · · , An ∈ Sp×p, if ∀∆ ∈ Rp, we have

‖


vec(A1)T

vec(A2)T

...
vec(An)T

 (∆⊗∆)‖2 ≤ A‖∆‖22.

Then ‖Ã‖2 ≤
√
pnA, where Ã = (vec(A1), vec(A2), · · · , vec(An))T .
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Proof Since Ã(∆ ⊗ ∆) = (∆TA1∆,∆TA2∆, · · · ,∆TAn∆)T , A2‖∆‖42 ≥∑n
i=1(∆TAi∆)2 which implies max

i≤n
‖Ai‖2 ≤ A. On the other hand, for B =

(A1, A2, · · · , An) ∈ Rp×np, we have ‖B‖22 = λmax(
∑n

i=1AiA
T
i ) ≤

∑n
i=1 λmax(AiA

T
i ) =∑n

i=1 ‖Ai‖2 ≤ nA2, which gives ‖Ã‖2 = ‖ÃT ‖2 ≤
√∑n

i=1 ‖vec(Ai)‖22 =
√∑n

i=1 ‖Ai‖2F ≤√
pnA.

Let the infeasible debiased weighted distributed estimator be φ̂IdWD =
∑K

k=1W
∗
k φ̂k,bc, where

φ̂k,bc is the first p1 dimension of θ̂k,bc. We first give a lemma on the MSE bound of this estimator.

Lemma B.8 Under Assumptions 1 - 4 and 7 - 8, and Assumption5 with v, v1 ≥ 4 ,

E
(
‖φ̂IdWD − φ∗‖22

)
≤ C1

nK
+

C2

n2K
+
C3

n3
. (33)

Proof Under the event Ek defined in the Lemma B.2, we have that

0 = ∇θkMn,k(θ
∗
k) +∇2

θk
Mn,k(θ

∗
k)∆k +

1

2
{
∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt}(∆k ⊗∆k)

= ∇θkMn,k(θ
∗
k) +∇2

θk
Mk(θ

∗
k)∆k +

1

2
∇3
θk
Mk(θ

∗
k)(∆k ⊗∆k)

+(∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))∆k +

1

2
{
∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt−∇3

θk
Mk(θ

∗
k)}(∆k ⊗∆k).

Recall that we have denoted Jk(θk) = ∇2
θk
Mk(θk), solve for the above equation and we will have

∆k = −Jk(θ∗k)−1∇θkMn,k(θ
∗
k)− Jk(θ∗k)−1(∇2

θk
Mn,k(θ

∗
k)

−∇2
θk
Mk(θ

∗
k))∆k −

1

2
Jk(θ

∗
k)
−1∇3

θk
Mk(θ

∗
k)(∆k ⊗∆k)

−1

2
Jk(θ

∗
k)
−1{
∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt−∇3

θk
Mk(θ

∗
k)}(∆k ⊗∆k). (34)

Now we first derive the MSE bound of the pseudo debiased weighted distributed estimator (with
known weights and bias correction term) φ̂pdWD: φ̂pdWD =

∑K
k=1Wk(θ

∗
k)(φ̂k −

1
nB

1
k(θ∗k)). Re-

call the definition of Wk(θ
∗
k), we have that ‖φ̂pdWD − φ∗‖22 ≤ C‖ 1

K

∑K
k=1Hk(θ

∗
k)
−1(φ̂k − φ∗ −

1
nB

1
k(θ∗k))‖22 = C‖ 1

K

∑K
k=1 H̃k(θ

∗
k)(∆k− 1

nBk(θ
∗
k))‖22, where H̃k(θ

∗
k) =

(
Hk(θ

∗
k)
−1 0

)
and thus

‖H̃k(θ
∗
k)‖2 = ‖Hk(θ

∗
k)‖2. Denote

Ωk,1 = (∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))∆k −

1

n
Ev1,k(θ

∗
k)d1,k(θ

∗
k),

Ωk,2 = (∆k ⊗∆k)−
1

n
Ed1,k(θ

∗
k)⊗ d1,k(θ

∗
k) and

Ωk,3 = {
∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt−∇3

θk
Mk(θ

∗
k)}(∆k ⊗∆k), (35)

then

∆k −
1

n
Bk(θ

∗
k) = { 1

n

n∑
i=1

di,k(θ
∗
k) +Qk(θ

∗
k)(Ωk,1 +

1

2
H3,k(θ

∗
k)Ωk,2 + Ωk,3)}I(Ek) + ∆kI(ECk ). (36)
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Furthermore, we denote

Ωk,1 = {(∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))(∆k −

1

n

n∑
i=1

di,k(θ
∗
k))}

+{(∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))

1

n

n∑
i=1

di,k(θ
∗
k)−

1

n
Ev1,k(θ

∗
k)d1,k(θ

∗
k)}

:= Ω
(1)
k,1 + Ω

(2)
k,1.

For Ω
(1)
k,1, under the event Ek and by Taylor’s expansion we have that ∆k − 1

n

∑n
i=1 di,k(θ

∗
k) =

Qk(θ
∗
k)(
∫ 1

0 ∇
2
θk
Mn,k(θ

∗
k + t∆k)dt − ∇2

θk
Mk(θ

∗
k))∆k, thus ‖∆k − 1

n

∑n
i=1 di,k(θ

∗
k)‖22IEk ≤

C1( 1
n

∑n
i=1G(Xk,i))

2‖∆k‖42IEk + C2‖∇2
θk
Mn,k(θ

∗
k) − ∇2

θk
Mk(θ

∗
k)‖22‖∆k‖22 ≤ C3‖∆k‖42 +

C2‖∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖22‖∆k‖22. Now using Hölder’s inequality we can show that

E
(
‖Ω(1)

k,1‖
2
2IEk

)
≤ C3{E

(
(
1

n

n∑
i=1

G(Xk,i))
6

)
}1/3{E

(
‖∇2

θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖62

)
}2/3{E

(
‖∆k‖82

)
}1/4

+C2{E
(
‖∇2

θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖62

)
}2/3{E

(
‖∆k‖62

)
}1/3 ≤ C

n3
.

For Ω
(2)
k,1, by the independence of the data samples, it is easy to show that E

(
Ω

(2)
k,1

)
= 0, now we

show that E‖Ω(2)
k,1‖

2
2 ≤ C

n2 . Denote eij = Evi,k(θ
∗
k)dj,k(θ

∗
k), then we have

E
(
‖Ω(2)

k,1‖
2
2

)
=

1

n4

n∑
i=1

n∑
j=1

n∑
s=1

n∑
t=1

E(vi,k(θ
∗
k)dj,k(θ

∗
k)− eij)T (vs,k(θ

∗
k)dt,k(θ

∗
k)− est). (37)

By a conditioning argument and independence among samples, it is straightforward to show
that if the set {i, j, s, t} has three or four unique elements, then E(vi,k(θ

∗
k)di,k(θ

∗
k) −

eij)
T (vs,k(θ

∗
k)dt,k(θ

∗
k) − eij) = 0. Thus the RHS of Equation (37) has at most O(n2) non-zero

elements and each of those non-zero elements can be bounded using Hölder’s inequality. Thus
E‖nΩ

(2)
k,1‖

2
2 ≤ C. By similar argument we can show thatE‖nΩ

(2)
k,1‖

4
2 ≤ C if v, v1 ≥ 4. By indepen-

dence among different Ω
(2)
k,1, we can directly show that E‖ 1

K

∑K
k=1 H̃k(θ

∗
k)Qk(θ

∗
k)Ω

(2)
k,1‖

2
2 ≤ C

n2K
.

For Ωk,2 appeared in Equation (35), Ωk,2 = {(∆k⊗∆k)−( 1
n

∑n
i=1 di,k(θ

∗
k))⊗( 1

n

∑n
i=1 di,k(θ

∗
k))}+

{( 1
n

∑n
i=1 di,k(θ

∗
k)) ⊗ ( 1

n

∑n
i=1 di,k(θ

∗
k)) −

1
nEd1,k(θ

∗
k) ⊗ d1,k(θ

∗
k)} = Ω

(1)
k,2 + Ω

(2)
k,2. We can

show that E‖ 1
K

∑K
k=1 H̃k(θ

∗
k)Qk(θ

∗
k)H3,k(θ

∗
k)Ω

(2)
k,2‖

2
2 ≤ C

n2K
using similar argument as that when

we bound Ω
(2)
k,1. On the other hand, since ‖a ⊗ a − b ⊗ b‖22 ≤ 2‖a − b‖22(‖a‖22 + ‖b‖22), we

have E
(
‖Ω(1)

k,2‖
2
21Ek

)
≤ 2E

(
‖∆k − 1

n

∑n
i=1 di,k(θ

∗
k)‖22IEk(‖∆k‖22 + ‖ 1

n

∑n
i=1 di,k(θ

∗
k)‖22)

)
≤

CE
(

(‖∆k‖42 + ‖∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖22‖∆k‖22)(‖∆k‖22 + ‖ 1

n

∑n
i=1 di,k(θ

∗
k)‖22)

)
≤ C

n3 .
The last inequality follows from a direct application of Hölder’s inequality.

For Ωk,3 in (35), following the proof of Lemma 12 in Zhang et al. (2013), we can show that

‖Ĥ3,k(θ
∗
k)−H3,k(θ

∗
k)‖2 ≤

C
n

∑n
i=1(G(Xk,i)+G), which showsE

(
‖Ĥ3,k(θ

∗
k)−H3,k(θ

∗
k)‖2v2

)
=
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O( 1
nv ). Combined with the lipschitz continuity of ∇3

θk
M(Xk,1, θk) with respect to θk in Uk, we

can show that E
(
‖Ωk,3‖221Ek

)
≤ C

n3 . For ∆kI(ECk ), using Hölder’s inequality we have that

E
(
‖∆kI(ECk )‖22

)
≤
√
E
(
‖∆k‖42

)
P (ECk ) = O(

1

nv2/2+1
).

Combined with E
(
‖ 1
nK

∑K
k=1

∑n
i=1 H̃k(θ

∗
k)di,k(θ

∗
k)‖22

)
= O((nK)−1), which is a direct appli-

cation of Lemma 7 in Zhang et al. (2013), we have

E
(
‖φ̂pdWD − φ∗‖22

)
≤ C1

nK
+

C2

n2K
+
C3

n3
+

C4

nv2/2+1
.

Lemma B.9 Under Assumptions 1 - 4 and 7 - 8, and Assumption 5 with v, v1 ≥ 4 ,

E
(
‖B̂k(θ̂k)IEk,bc −Bk(θ

∗
k)‖22

)
≤ C

nk
.

Proof Denote ∆k = θ̂k − θ∗k. By the definition of the event Ek,bc, we already have that
‖B̂k(θ̂k)IEk,bc −Bk(θ∗k)‖22 ≤ Cn2. Below we first control the ‖Qk(θ∗k)− Q̂k(θ̂k)‖2 term. Note that
Qk(θk), Q̂k(θk) are exactly −L−1

k (θk),−L̂k(θk)−1 defined in the proof of Theorem 3, thus under
the event {‖L̂k(θ̂k)− Lk(θ∗k)‖2 ≤

ρ−
2 }, we have ‖Qk(θ∗k)− Q̂k(θ̂k)‖2 ≤

2
ρ2
−
‖L̂k(θ̂k)− Lk(θ∗k)‖2.

Besides,

‖L̂k(θ̂k)− Lk(θ∗k)‖2 ≤
1

n

n∑
i=1

G(Xk,i)‖∆k‖2 + ‖L̂k(θ∗k)− Lk(θ∗k)‖2. (38)

So if we define EQ,k = {‖∆k‖2 ≤ ρ−
8G , Gn,k ≤ 2G, ‖L̂k(θ∗k) − Lk(θ∗k)‖2 <

ρ−
4 }, then under this

event we have ‖Q̂k(θ̂k)‖2 ≤ ‖Qk(θ∗k) − Q̂k(θ̂k)‖2 + ‖Qk(θ∗k)‖2 ≤
1
ρ−

+ ρ−. Using union bound
and Markov’s inequality it is easy to show P (EQ,k) = 1−O( 1

nv2 ) with v2 = min{v, v1}. Thus we

have E
(

1EQ,k‖Qk(θ∗k)− Q̂k(θ̂k)‖22
)
≤ C1E

(
‖∆k‖22

)
+C2E

(
‖L̂k(θ∗k)− Lk(θ∗k)‖22

)
= O( 1

n). It
is noted that

‖B̂k(θ̂k)−Bk(θ∗k)‖22

≤ 2‖Q̂k(θ̂k)
1

n

n∑
i=1

v̂i,k(θ̂k)d̂i,k(θ̂k)−Qk(θ∗k)Evi,k(θ∗k)di,k(θ∗k)‖22

+
1

2
‖Q̂k(θ̂k)Ĥ3,k(θ̂k)

1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)−Qk(θ∗k)H3,k(θ
∗
k)Edi,k(θ

∗
k)⊗ di,k(θ∗k)‖22

:= 2Ωk,1 +
1

2
Ωk,2.
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Then we can bound those two terms respectively. For Ωk,1, under the event EQ,k we have

Ωk,11EQ,k

≤ 2
(
‖Q̂k(θ̂k){

1

n

n∑
i=1

v̂i,k(θ̂k)d̂i,k(θ̂k)− Evi,k(θ∗k)di,k(θ∗k)}‖221EQ,k

+ 1EQ,k‖Qk(θ
∗
k)− Q̂k(θ̂k)‖22‖Evi,k(θ∗k)di,k(θ∗k)‖22

)
≤ C1‖

1

n

n∑
i=1

(v̂i,k(θ̂k)d̂i,k(θ̂k)− v̂i,k(θ∗k)di,k(θ∗k))‖221EQ,k + C2‖
1

n

n∑
i=1

v̂i,k(θ
∗
k)di,k(θ

∗
k)− Evi,k(θ∗k)di,k(θ∗k)‖22

+C31EQ,k‖Qk(θ
∗
k)− Q̂k(θ̂k)‖22. (39)

By Lemma 7 in Zhang et al. (2013), we haveE
(
‖ 1
n

∑n
i=1 v̂i,k(θ

∗
k)di,k(θ

∗
k)− Evi,k(θ∗k)di,k(θ∗k)‖22

)
=

O( 1
n). Besides, using previous results we can also prove that E

(
1EQ,k‖Qk(θ∗k)− Q̂k(θ̂k)‖22

)
=

O( 1
n). So we only need to show E

(
Ω

(1)
k,1

)
= O( 1

n), where Ω
(1)
k,1 = ‖ 1

n

∑n
i=1(v̂i,k(θ̂k)d̂i,k(θ̂k) −

v̂i,k(θ
∗
k)di,k(θ

∗
k))‖221EQ,k .

Ω
(1)
k,1 ≤ 2‖ 1

n

n∑
i=1

(v̂i,k(θ̂k)− v̂i,k(θ∗k))d̂i,k(θ̂k)‖221EQ,k + 2‖ 1

n

n∑
i=1

v̂i,k(θ
∗
k)(d̂i,k(θ̂k)− di,k(θ∗k))‖221EQ,k

:= 2(Ω
(2)
k,1 + Ω

(3)
k,1).

Since ‖v̂i,k(θ̂k)− v̂i,k(θ∗k)‖2 ≤ G(Xk,i)‖∆k‖2,

Ω
(2)
k,1 ≤ C‖∆k‖22(

1

n

n∑
i=1

G(Xk,i)‖∇θkM(Xk,i; θ̂k)‖2)2.

Under the event Ek, we have the expansion

∇θkM(Xk,i; θ̂k) = ∇θkM(Xk,i; θ
∗
k) +

∫ 1

0
∇2
θk
M(Xk,i; θ

∗
k + t∆k)dt∆k,

which implies

‖∇θkM(Xk,i; θ̂k)‖2
≤ ‖∇θkM(Xk,i; θ

∗
k)‖2 + C1G(Xk,i) + C‖∇2

θk
M(Xk,i; θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖2 + C3. (40)

Since v2 ≥ 4, by Hölder’s inequality with three terms we have

E
(

Ω
(2)
k,11Ek

)
≤ CE

(
‖∆k‖22

1

n

n∑
i=1

G2(Xk,i)‖∇θkM(Xk,i; θ̂k)‖221Ek

)

≤ C 1

n

n∑
i=1

{E
(
‖∆k‖62

)
EG

(
(Xk,i)

6
)
E
(
‖∇θkM(Xk,i; θ̂k)1Ek‖

6
2

)
}1/3 = O(

1

n
).
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We can similarly show that E
(

Ω
(3)
k,11Ek

)
= O( 1

n). Now we turn to bound Ωk,2. Following the
proof of Lemma 12 in Zhang et al. (2013), we can show that

‖Ĥ3,k(θ
∗
k)−H3,k(θ

∗
k)‖2 ≤

1

n

n∑
i=1

(G(Xk,i) +G), (41)

which implies E
(
‖Ĥ3,k(θ

∗
k)−H3,k(θ

∗
k)‖2v2

)
= O( 1

nv ). Besides, using Assumption 8 and Lemma
B.7, under the event Ek we have

‖Ĥ3,k(θ̂k)− Ĥ3,k(θ
∗
k)‖2 ≤

p

n

n∑
i=1

A(Xk,i)‖∆k‖2.

If we define the event

Ethird,k = { 1

n

n∑
i=1

G(Xk,i) ≤ 2G,
1

n

n∑
i=1

A(Xk,i) ≤ 2A, ‖Ĥ3,k(θ
∗
k)−H3,k(θ

∗
k)‖2 ≤ 1}, (42)

then P (Ethird,k) = 1 − O( 1
nv ) and under this event ‖Ĥ3,k(θ̂k)‖2 ≤ C. Now under the event

Ek ∩ EQ,k ∩ Ethird,k we have that

Ωk,21Ek∩EQ,k∩Ethird,k

≤ 2‖Q̂k(θ̂k)Ĥ3,k(θ̂k)
1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)−Qk(θ∗k)H3,k(θ
∗
k)

1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)‖221Ek∩EQ,k∩Ethird,k

+C‖ 1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)− Ed1,k(θ

∗
k)⊗ d1,k(θ

∗
k)‖221Ek∩EQ,k

≤ C1‖(Q̂k(θ̂k)Ĥ3,k(θ̂k)−Qk(θ∗k)H3,k(θ
∗
k))

1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)‖221Ek∩EQ,k∩Ethird,k

+C2‖
1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)−
1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)‖221Ek∩EQ,k

+C‖ 1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)− Ed1,k(θ

∗
k)⊗ d1,k(θ

∗
k)‖22

:= C1Ω
(1)
k,2 + C2Ω

(2)
k,2 + CΩ

(3)
k,2

Using lemma 7 in Zhang et al. (2013), we have E
(

Ω
(3)
k,2

)
= O( 1

n). Now we consider Ω
(1)
k,2. Note

Ω
(1)
k,2

≤ C(‖Ĥ3,k(θ̂k)−H3,k(θ
∗
k)‖221Ethird,k + ‖Q̂k(θ̂k)−Qk(θ∗k)‖221EQ,k)(

1

n

n∑
i=1

‖∇θkM(Xk,i; θ̂k)‖221Ek)2,

E
(

Ω
(1)
k,2

)
≤ C(

√
E
(
‖Ĥ3,k(θ̂k)−H3,k(θ

∗
k)‖421Ethird,k

)
+

√
E
(
‖Q̂k(θ̂k)−Qk(θ∗k)‖421EQ,k

)
) ·√√√√E(

1

n

n∑
i=1

‖∇θkM(Xk,i; θ̂k)‖221Ek)4 = O(
1

n
).

36



DISTRIBUTED STATISTICAL INFERENCE UNDER HETEROGENEITY

Besides, we can also show that E
(

Ω
(2)
k,2

)
= O( 1

n). In summary, now we have shown that

E
(
‖B̂(θ̂k)−Bk(θ∗k)‖221Ek∩EQ,k∩Ethird,k

)
= O( 1

n). If we define the event Ẽk = Ek∩EQ,k∩Ethird,k,

then we can show that P (Ẽk) = 1 − 1
nv2 . Besides, by subadditivity of the probability measure and

Markov’s inequality, we have that

P (Eck,bc) ≤ P (
1

n
‖B̂k(θ̂k)−Bk(θ∗k)‖2 >

r

2
) + P (‖θ̂k − θ∗k‖2 +

1

n
‖Bk(θ∗k)‖2 >

r

2
)

≤ P (
1

n
‖B̂k(θ̂k)−Bk(θ∗k)‖2 >

r

2
, Ẽk) + P (Ẽck) +

C

nv2
≤ C1

n3
+
C2

nv2
.

Thus E‖B̂k(θ̂k)1Ek,bc −Bk(θ∗k)‖22 ≤ 2E‖B̂k(θ̂k)−Bk(θ∗k)‖221Ẽk∩Ek,bc + 2E‖Bk(θ∗k)‖221ECk,bc∩Ẽk
+

C1n
2 1
nv2 ≤

C1
n + C2

n3 + C3

nv2−2 + C4
nv2 = O( 1

n). The result follows.

The asymptotic normality of the IdWD estimator is established in the following lemma.

Lemma B.10 Under Assumptions 1 - 4 and 7 - 8, and Assumption 5 with v, v1 ≥ 4 , if K = o(n2),

(φ̂IdWD − φ∗)T {
K∑
k=1

nkHk(θ
∗
k)
−1}(φ̂IdWD − φ∗) d→ χ2

p1
.

Proof Note that

φ̂IdWD − φ∗ (43)

= { 1

K

K∑
k=1

Hk(θ∗k)−1}−1 1

K

K∑
k=1

H̃k(θ∗k)
(
(∆k −

1

n
Bk(θ∗k)) + (

1

n
Bk(θ∗k))− 1

n
B̂k(θ̂k)1Ek,bc

)
)
.

Since we have shown that E‖ 1
nBk(θ

∗
k) −

1
nB̂k(θ̂k)1Ek,bc‖

2
2 = O( 1

n3 ), by Markov’s inequality we
can show that

√
N( 1

nBk(θ
∗
k))−

1
nB̂k(θ̂k)1Ek,bc) = op(1) whenK = o(n2). So we consider the first

part in the RHS of the above equation. Following (36),

1

K

K∑
k=1

H̃k(θ
∗
k)(∆k −

1

n
Bk(θ

∗
k)) (44)

=
1

Kn

K∑
k=1

n∑
i=1

H̃k(θ
∗
k)di,k(θ

∗
k) +

1

K

K∑
k=1

H̃k(θ
∗
k){Qk(θ∗k)(Ωk,1 +

1

2
H3,k(θ

∗
k)Ωk,2 + Ωk,3)}I(∩Kk=1Ek)

+
1

K

K∑
k=1

H̃k(θ
∗
k)(∆k +

1

n

n∑
i=1

di,k(θ
∗
k))I((∩Kk=1Ek)c).

Using results in the proof of Lemma B.8, when K = o(n2),
√
N 1

K

∑K
k=1 H̃k(θ

∗
k){Qk(θ∗k)(Ωk,1 +

1
2H3,k(θ

∗
k)Ωk,2 + Ωk,3)} = op(1), where Ωk,i for 1 ≤ i ≤ 3 is defined in

(35). Besides, since P ((∩Kk=1Ek)c) = K
nv2 for some v2 = min{v, v1} ≥ 4,√

N 1
K

∑K
k=1 H̃k(θ

∗
k)(∆k + 1

n

∑n
i=1 di,k(θ

∗
k))I((∩Kk=1Ek)c) = op(1) when K = o(n2). Then,

we can apply Lindeberg-Feller’s central limit theorem to establish the asymptotic normality of
{ 1
K

∑K
k=1Hk(θ

∗
k)
−1}−1/2 1√

nK

∑K
k=1 H̃k(θ

∗
k)di,k(θ

∗
k), which implies the limiting χ2

p1
distribution

of φ̂IdWD using (43) and (44).
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B.2 Proof of Proposition 1

Proof The consistency of the local estimator θ̂k is directly implied by Lemma 6 of Zhang
et al. (2013). Below we consider the consistency of the global estimator θ̂. Define the
objective M̄(X, θ) = (1/K)

∑K
k=1M(xk, θk), where X = (xT1 , x

T
2 , ..., x

T
K)T . Then we

can formulate an statistical optimization problem with the population objective as M̄∗(θ) =

(1/K)E
(∑K

k=1M(Xk,1; θk)
)

. Denote M̄i(Xi, θ) = (1/K)
∑K

k=1M(Xk,i, θk) and M̄(X, θ) =

(1/n)
∑n

i=1 M̄i(Xi, θ). Now we can directly check that E
(
‖∇θM̄i(Xi, θ

∗)‖2v1
2

)
≤ R2v1 and

E
(
‖∇2

θM̄i(Xi, θ
∗)−∇2

θM̄
∗(θ∗)‖2v2

)
≤ L2v. Besides, for all θ, θ

′ ∈ U with U = {θ|‖θ − θ∗‖2 ≤
ρ}, we have

‖∇2
θM̄(X, θ)−∇2

θM̄(X, θ
′
)‖2 ≤ (

1

K

K∑
k=1

G(xk))‖θ − θ
′‖2,

where (1/K)E
(

(
∑K

k=1G(Xk,1))2v
)
≤ G2v. Also note that we can directly prove

∇2
θM̄
∗(θ∗) �

(
ρ−Ip1×p1 0

0 ρ−
K IKp2×KP2

)
� ρ−
K
I(p1+Kp2)×(p1+Kp2).

Now we can apply Lemma 6 of Zhang et al. (2013) to obtain the consistency of θ̂.

B.3 Proof of Theorem 2

Proof See the proof of Lemma B.4.

B.4 Proof of Theorem 2

Proof Note that

‖φ̂− φ∗‖2 ≤ ‖( 1

K

K∑
k=1

Ĥk(θ̂k)
−1)−1‖2‖

1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖2.

Since Hk(θ
∗
k)
−1 � ρ2

−
ρσ
Ip1×p1

∆
= ρhIp1×p1 , by Lemma B.3, the event IHK = {‖Ĥk(θ̂k)

−1 −
Hk(θ

∗
k)
−1‖2 ≤ c

2 , k = 1, ...,K} implies ‖{ 1
K

∑K
k=1 Ĥk(θ̂k)

−1}−1−{ 1
K

∑K
k=1Hk(θ

∗
k)
−1}−1‖2 ≤

2
c2
‖ 1
K

∑K
k=1 Ĥk(θ̂k)

−1 − 1
K

∑K
k=1Hk(θ

∗
k)
−1‖2. Using Lemma B.3 again with Hk(θ

∗
k) � cIp1×p1

as assumed in Assumption 7, the event HK = {‖Ĥk(θ̂k) −Hk(θ
∗
k)‖2 ≤

c
2 , k = 1, ...,K} implies

‖Ĥk(θ̂k)
−1−Hk(θ

∗
k)
−1‖2 ≤ 2

c2
‖Ĥk(θ̂k)−Hk(θ

∗
k)‖2, k = 1, 2, · · · ,K. Now for any ε > 0, define

εH = min{ε, c}/4, then under the event

HεK = {‖Ĥk(θ̂k)−Hk(θ
∗
k)‖2 ≤ εH , k = 1, ...,K} (45)
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we have ‖{ 1
K

∑K
k=1 Ĥk(θ̂k)

−1}−1 − { 1
K

∑K
k=1Hk(θ

∗
k)
−1}−1‖2 ≤ ε. Now using the boundedness

of ‖φ̂WD − φ∗‖, we have

E
(
‖φ̂WD − φ∗‖22

)
≤ C1E

(
‖ 1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖22I(HεK)

)
(46)

+C2E

(
‖ 1

K

K∑
k=1

(φ̂k − φ∗k)‖22I(‖ 1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖22I(HεK) ≥ C4)

)
+ C3P ((HεK)c).

To derive the upper bound of E
(
‖φ̂WD − φ∗‖22

)
, we only need to separately bound the three terms

on the RHS of (46). Let us first consider bounding P ((HεK)c). Denote

L̂k(θk) = ∇2
θk
Mn,k(θk), Lk(θk) = ∇2

θk
Mk(θk),

V̂k(θk) = L̂k(θk)
−1Σ̂S,k(θk)L̂k(θk)

−1 and Vk(θk) = Lk(θk)
−1ΣS,k(θk)Lk(θk)

−1.

By definition of Ĥk(θk) and the triangle’s inequality, we have

‖Ĥk(θ̂k)−Hk(θ
∗
k)‖2 ≤ ‖V̂k(θ̂k)− V̂k(θ∗k)‖2 + ‖V̂k(θ∗k)− Vk(θ∗k)‖2. (47)

Hence, we can bound those two terms on the RHS of (47) separately. Note that

‖V̂k(θk)− Vk(θk)‖2 = ‖L̂k(θk)−1Σ̂S,k(θk)L̂k(θk)
−1 − Lk(θk)−1ΣS,k(θk)Lk(θk)

−1‖2
≤ 2(‖L̂k(θk)−1 − Lk(θk)−1‖22 + ‖Lk(θk)−1‖22)‖Σ̂S,k(θk)− ΣS,k(θk)‖2 (48)

+(‖L̂k(θk)−1 − Lk(θk)−1‖2 + 2‖Lk(θk)−1‖2)‖ΣS,k(θk)‖2‖L̂k(θk)−1 − Lk(θk)−1‖2.

Then, under the event LεK = {‖L̂k(θ∗k)− Lk(θ∗k)‖2 ≤ min{ερ2
−/2, ρ−/2}, k = 1, ...,K} with ρ−

being the lower bound of the eigenvalues of Lk(θ∗k) as assumed in Assumption 4, we have

‖V̂k(θ∗k)− Vk(θ∗k)‖2 (49)

≤ 2(ε2 +
1

ρ2
−

)‖Σ̂S,k(θ
∗
k)− ΣS,k(θ

∗
k)‖2 + (ε+

2

ρ−
)
2ρσ
ρ2
−
‖L̂k(θ∗k)− Lk(θ∗k)‖2, k = 1, ...,K.

Similar to (48), we have

‖V̂k(θ̂k)− V̂k(θ∗k)‖2
≤ 2(‖L̂k(θ̂k)−1 − L̂k(θ∗k)−1‖22 + ‖L̂k(θ∗k)−1‖22)‖Σ̂S,k(θ̂k)− Σ̂S,k(θ

∗
k)‖2

+(‖L̂k(θ̂k)−1 − L̂k(θ∗k)−1‖2 + 2‖L̂k(θ∗k)−1‖2)‖Σ̂S,k(θ
∗
k)‖2‖L̂k(θ̂k)−1 − L̂k(θ∗k)−1‖2.

Define an event

MK =

{
‖L̂k(θ∗k)−1‖2 ≤

2

ρ−
, ‖Σ̂S,k(θ

∗
k)‖2 ≤ 2ρσ,

‖L̂k(θ̂k)− L̂k(θ∗k)‖2 ≤ min{
ρ−
4
,
ερ2
−

8
}, k = 1, ...,K

}
.

39



GU AND CHEN

Then, under this event for k = 1, 2, ...,K we have

‖V̂k(θ̂k)− V̂k(θ∗k)‖2

≤ 2(ε2 +
4

ρ2
−

)‖Σ̂S,k(θ̂k)− Σ̂S,k(θ
∗
k)‖2 + (ε+

4

ρ−
)
16ρσ
ρ2
−
‖L̂k(θ̂k)− L̂k(θ∗k)‖2

≤ (C1Bn,k + C2Gn,k)‖θ̂k − θ∗k‖2, (50)

where Bn,k = (1/n)
∑n

i=1B(Xk,i) and Gn,k = (1/n)
∑n

i=1G(Xk,i). Note that ‖L̂k(θ∗k)−1‖2 ≤
2
ρ−

and ‖Σ̂S,k(θ
∗
k)‖ ≤ 2ρσ are implied by ‖L̂k(θ∗k)−Lk(θ∗k)‖2 ≤

ρ−
2 and ‖Σ̂S,k(θ

∗
k)−ΣS,k(θ

∗
k)‖2 ≤

ρσ
2 , respectively. Thus, we define the event

UK =

{
Bn,k ≤ 2B,Gn,k ≤ 2G, ‖L̂k(θ∗k)− Lk(θ∗k)‖2 ≤ C1,

‖Σ̂S,k(θ
∗
k)− ΣS,k(θ

∗
k)‖2 ≤ C2, k = 1, ...,K

}
,

which satisfiesMK∪LεK ⊂ UK and under UK we have ‖Ĥk(θ̂k)−Hk(θ
∗
k)‖2 ≤ C‖θ̂k−θ∗k‖2 + εH

2 .
Furthermore, we define the event

AK = UK ∩ (∩Kk=1Ek) ∩ ({‖θ̂k − θ∗k‖2 ≤
εH
2C

, k = 1, ...,K}). (51)

By Lemma 6 in Zhang et al. (2013), under the event ∩Kk=1Ek, the event {‖θ̂k−θ∗k‖2 ≤ εH/(2C), k =
1, ...,K} is implied by the event {‖∇θkMn,k(θ

∗
k)‖2 ≤ (1−ρ)ρ−εH/(4C), k = 1, ...K}. Now with

the union bound and Lemma 7 in Zhang et al. (2013), we can obtain that

P ((HεK)c) ≤ P (AcK) ≤ C K
nv̄
, (52)

where v̄ = min{v, v1
2 }. It is noted that we need the existence of higher-order moments of the score

(first-order derivative of the M-function) due to the estimation of its covariance matrix ΣS,k(θ
∗
k) in

the construction of the estimated optimal weights.
Next we consider bounding E‖ 1

K

∑K
k=1 Ĥk(θ̂k)

−1(φ̂k − φ∗)‖22I(HεK) in (46). Recall the def-

inition of HεK in (45), we can naturally decompose the event into HεK = ∩Kk=1H
ε,(k)
K , where

Hε,(k)
K = {‖Ĥk(θ̂k)−Hk(θ

∗
k)‖2 ≤ εH}. It is noted that under the eventHε,(k)

K , we have

‖Ĥk(θ̂k)
−1‖2 ≤

2

c2
‖Ĥk(θ̂k)−Hk(θ

∗
k)‖2 + ‖Hk(θ

∗
k)
−1‖2 ≤ C.

Since elements of {Ĥk(θ̂k)
−1(φ̂k−φ∗)I(Hε,(k)

K )}Kk=1 are independent with one another, we decom-
pose the term as follows:

E

(
‖ 1

K

K∑
k=1

Ĥk(θ̂k)−1(φ̂k − φ∗)‖22I(HεK)

)
≤ max

1≤k≤K

(
C

K
E
(
‖φ̂k − φ∗‖22

)
+ ‖E

(
Ĥk(θ̂k)−1(φ̂k − φ∗)I(Hε,(k)K )

)
‖22
)
.

(53)
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By the proof of Theorem 1 in Zhang et al. (2013), we have that E‖φ̂k − φ∗‖22 ≤ C1
n + C2

n2 .
Besides, for the second term in the RHS of inequality (53), we have

‖E
(
Ĥk(θ̂k)

−1(φ̂k − φ∗)I(Hε,(k)
K )

)
‖22

≤ 2‖E
(

(Ĥk(θ̂k)
−1 −Hk(θ

∗
k)
−1)(φ̂k − φ∗)I(Hε,(k)

K )
)
‖22 + 2‖E

(
Hk(θ

∗
k)
−1(φ̂k − φ∗)I(Hε,(k)

K )
)
‖22

≤ C1E
(
‖Ĥk(θ̂k)

−1 −Hk(θ
∗
k)
−1‖22I(Hε,(k)

K )‖φ̂k − φ∗‖22
)

+ C‖E
(

(θ̂k − θ∗k)I(Hε,(k)
K )

)
‖22.

Using Equations (47), (49) and (50), we can show that for 2v̄ ≥ v′ ≥ 1,

‖Ĥk(θ̂k)
−1 −Hk(θ

∗
k)
−1‖v

′

2 I(Hε,(k)
K ) ≤ C1‖V̂k(θ̂k)− Vk(θ∗k)‖v

′

2 I(Hε,(k)
K )

≤ C2(‖Σ̂S,k(θ
∗
k)− ΣS,k(θ

∗
k)‖v

′

2 + ‖L̂k(θ∗k)− Lk(θ∗k)‖v
′

2 + ‖θ̂k − θ∗k‖v
′

2 ).

We immediately have E
(
‖Ĥk(θ̂k)

−1 −Hk(θ
∗
k)
−1‖v

′

2 I(Hε,(k)
K )

)
= O(1/nv

′
/2). Thus by Hölder’s

inequality we have

E
(
‖Ĥk(θ̂k)

−1 −Hk(θ
∗
k)
−1‖22I(Hε,(k)

K )‖φ̂k − φ∗‖22
)

≤
√
E
(
‖Ĥk(θ̂k)−1 −Hk(θ

∗
k)
−1‖42I(Hε,(k)

K )
)
E
(
‖φ̂k − φ∗‖42

)
= O(

1

n2
) +O(

1

n3
).

On the other hand, we have that

‖E
(

(φ̂k − φ∗)I(Hε,(k)
K )

)
‖22 ≤ 2‖E(φ̂k − φ∗)‖22 + 2‖E

(
(φ̂k − φ∗)(1− I(Hε,(k)

K ))
)
‖22

≤ 2‖E(φ̂k − φ∗)‖22 + 2

√
E
(
‖φ̂k − φ∗‖42

)
P ((Hε,(k)

K )C)

= O(
1

n2
) +

√
O(

1

n2
)O(

1

nv̄
) = O(

1

n2
),

where the equation ‖E(φ̂k − φ∗)‖22 = O(1/n2) follows from the proof of Theorem 1 Zhang et al.

(2013), and now we conclude that ‖E
(
Ĥk(θ̂k)

−1(φ̂k − φ∗)I(Hε,(k)
K )

)
‖22 ≤ C/n2. In summary

we have

E

(
‖ 1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖22I(HεK)

)
≤ C1

nK
+

C2

n2K
+
C3

n2
+
C4

n3
. (54)

At last we consider boundingE
(
‖ 1
K

∑K
k=1(φ̂k − φ∗k)‖22I(‖ 1

K

∑K
k=1 Ĥk(θ̂k)

−1(φ̂k − φ∗)‖22 ≥ C4)
)

in (46) . Denote this term as R̃. Using previous results we can similarly show that

R̃ = O(
1

nK
) +O(

1

n2
). (55)

With Equations (52), (54) and (55), the proof is complete.
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B.5 Proof of Theorem 3

Proof With the results in Lemma B.4 and Lemma B.5, the proof follows from a direct application
of the Slutsky’s lemma.

B.6 Proof of Theorem 9

Proof
To apply Theorem 1 in Yuan and Jennrich (2000) Yuan and Jennrich (2000), we need to check

the uniform convergence of 1
n

∑n
i=1

(
ψλφ(Xk,i, θk)

T ψλλ(Xk,i; θk)
T
)T

. This is actually the last
p2 columns of ∇2

θk
Mn,k(θk) for θk ∈ Uk, so we only need to show the uniform convergence of

∇2
θk
Mn,k(θk) in Uk. By Assumption 5,∇2

θk
M(x; θk) is Lipschitz continuous w.r.t. θk for θk ∈ Uk,

then we can directly apply Corollary 3.1 of Newey (1991)Newey (1991) to establish the required
uniform convergence.

Now we are to show λ̂
(2)
k

P→ λ∗k. Following the proof of Lemma 6 in Zhang et al. (2013) Zhang
et al. (2013), we can first show that under the event Ek, Mn,k(θk) is (1 − ρ)ρ−-strongly convex on
the ball Ũk = {‖θk− θ∗k‖2 ≤ ρk}, where ρk ≤ min{ρρ−4G , ρ}. Define the event EWD,k = {‖φ̂WD−
φ∗‖2 < ρk/2}, then under this event, θ̃∗k = (φ̂WD, λ∗k) ∈ Ũk. For any θ

′
k = (φ̂WD, λk) ∈ Θk, if

θ
′
k 6∈ Ũk, then under EWD,k, there exists w0 ∈ [0, 1] such that θ

′
k,0 = w0θ

′
k + (1−w0)θ̃∗k lies on the

surface of the ball Ũk, and thus ‖θ′k,0 − θ̃∗k‖2 = w0‖θ
′
k − θ̃∗k‖2 ∈ (ρk2 ,

3ρk
2 ). Now under EWD,k we

have that

Mn,k(θ
′
k) ≥ Mn,k(θ

′
k,0)+ < ∇θkMn,k(θ

′
k,0), θ

′
k − θ

′
k,0 >

≥ Mn,k(θ̃
∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k > +

1

2
(1− ρ)ρ−

ρ2
k

4

+ < ∇θkMn,k(θ
′
k,0)−∇θkMn,k(θ̃

∗
k), θ

′
k − θ

′
k,0 >

≥ Mn,k(θ̃
∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k > +

1

2
(1− ρ)ρ−

ρ2
k

4
, (56)

where the first inequality holds due to the convexity of Mn,k(θk) on Uk and the second holds due to
the strong convexity on Ũk. The last inequality holds due to θ

′
k− θ̃∗k = 1−w0

w0
(θ
′
k,0− θ̃∗k). When θ

′
k ∈

Ũk, with strong convexity Equation (56) still holds with ρ2
k
4 changed to ‖θ′k − θ̃∗k‖22 = ‖λk − λ∗k‖22.

In any case the following relationship holds under the event EWD,k:

Mn,k(θ
′
k) ≥Mn,k(θ̃

∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k > +

1

2
(1− ρ)ρ−min{

ρ2
k

4
, ‖λk − λ∗k‖22}.

Rewriting the inequality we obtain that

min{‖λk − λ∗k‖22,
ρ2
k

4
} ≤ 2

(1− ρ)ρ−
[Mn,k(θ

′
k)−Mn,k(θ̃

∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k >]

≤ 2

(1− ρ)ρ−
[Mn,k(θ

′
k)−Mn,k(θ̃

∗
k) + ‖∇θkMn,k(θ̃

∗
k)‖2‖θ

′
k − θ̃∗k‖2]. (57)
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Now if we denote θ
′
k,1 = (φ̂WD, λ̂

(2)
k ) and set θ

′
k = κθ

′
k,1 + (1− κ)θ̃∗k for any fixed κ ∈ [0, 1], we

will have

min{κ‖λ̂(2)
k −λ

∗
k‖2,

ρ2
k

4κ‖λ̂(2)
k − λ∗k‖2

} ≤
2(Mn,k(κθ

′
k,1 + (1− κ)θ̃∗k)−Mn,k(θ̃

∗
k))

κ(1− ρ)ρ−‖λ̂(2)
k − λ∗k‖2

+
2‖∇θkMn,k(θ̃

∗
k)‖2

(1− ρ)ρ−
.

By definition we have Mn,k(θ
′
k,1) ≤Mn,k(θ̃

∗
k) and thus by convexity we have

min{κ‖λ̂(2)
k − λ

∗
k‖2,

ρ2
k

4κ‖λ̂(2)
k − λ∗k‖2

} ≤
2‖∇θkMn,k(θ̃

∗
k)‖2

(1− ρ)ρ−
.

Define the event Es,k = {2‖∇θkMn,k(θ̃∗k)‖2
(1−ρ)ρ−

≤ ρk
2 }, then under this event we have

min{κ‖λ̂(2)
k − λ

∗
k‖2,

ρ2
k

4κ‖λ̂(2)
k − λ∗k‖2

} ≤ ρk
2
.

If ‖λ̂(2)
k − λ

∗
k‖2 >

ρk
2 , we can set κ = ρk

2‖λ̂(2)
k −λ

∗
k‖2

, which leads to a contradiction. Thus we have

‖λ̂(2)
k − λ

∗
k‖2 ≤

ρk
2 . Then using Equation (57) we have

‖λ̂(2)
k − λ

∗
k‖2 <

2‖∇θkMn,k(θ̃
∗
k)‖2

(1− ρ)ρ−
. (58)

Since φ̂WD is consistent, we have P (EWD,k) → 1. Besides, we already know that P (Ek) → 1.
Due to the form of the event Es,k and inequality (58), it remains to show ‖∇θkMn,k(θ̃

∗
k)‖2 = oP (1)

to establish the consistency of λ̂(2)
k . Note

‖∇θkMn,k(θ̃
∗
k)‖2 ≤ ‖∇θkMn,k(θ̃

∗
k)−∇θkMn,k(θ

∗
k)‖2 + ‖∇θkMn,k(θ

∗
k)‖2

and the latter term is of Op( 1
nv1 ). Using the consistency of φ̂WD we can show ‖∇θkMn,k(θ̃

∗
k) −

∇θkMn,k(θ
∗
k)‖2 = op(1). Besides, since φ̂WD is

√
N -consistent and K → ∞, then

√
n(φ̂WD −

φ∗) = op(1) and the asymptotic normality of
√
n
(

1
n

∑n
i=1 ψλ(Xk,i; θ

∗
k) + Ψφ

λ(θ∗k)(φ̂
WD − φ∗)

)
is

implied by the asymptotic normality of
√
n
(

1
n

∑n
i=1 ψλ(Xk,i; θ

∗
k)
)

and Slutsky’s lemma. Now we
apply Theorem 1 in Yuan and Jennrich (2000) and the result follows.

B.7 Proof of Theorem 4

Proof Recall the definition of the event HεK defined in Formula (45) in the proof of Theorem
2, we can similarly define HεK,j to control the estimation error of {Ĥk,j(θ̂k,j)}Kk=1, j = 1, 2, and
1− P (HεK,j) ≤

C
nv̄ . Note

E
(
‖φ̂dWD − φ∗‖22

)
≤ 1

2

2∑
j=1

E
(
‖φ̂dWD

j − φ∗‖22
)

= E
(
‖φ̂dWD

1 − φ∗‖22
)
,
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so it suffices to bound the last term. Under the eventHεK,1 and using boundedness of ‖φ̂dWD
1 −φ∗‖2,

E
(
‖φ̂dWD

1 − φ∗‖22
)

≤ C1E

(
‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖22I(HεK,1)

)

+C2E

(
‖ 1

K

K∑
k=1

(φ̂bck,2 − φ∗)‖22I(‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖22I(HεK,1) > C3)

)
+C4E

(
‖φ̂dWD

1 − φ∗‖22I((HεK,1)c)
)

∆
= C1E (R1) + C2E (R2) + C4E (R3) . (59)

In the following, we control R1, R2, R3, respectively.

R1 ≤ C1‖
1

K

K∑
k=1

ˆ̃Hk,1(θ̂k,1)(θ̂k,2 − θ∗k −
1

n/2
Bk(θ

∗
k))‖22I(HεK,1)

+
1

n2

C2

K

K∑
k=1

‖B̂k,2(θ̂k,2)1Ek,bc,2 −Bk(θ
∗
k)‖22I(θ̂bck,2 ∈ Θk),

where ˆ̃Hk,1(θ̂k,1) =
(
Ĥk,1(θ̂k,1)−1 0

)
. Using the result in Lemma B.9 , the expectation of the

second term in the RHS is of O( 1
n3 ). Denote the first term as R(1)

1 . We can decompose the event

HεK,1 asHεK,1 = ∩Kk=1H
(k),ε
K,1 whereHε,(k)

K,1 = {‖Ĥk,1(θ̂k,1)−Hk(θ
∗
k)‖2 ≤ εH}. Then, we have

R
(1)
1 = ‖ 1

K

K∑
k=1

ˆ̃Hk,1(θ̂k,1)I(H(k),ε
K,1 )(θ̂k,2 − θ∗k −

1

n/2
Bk(θ

∗
k))‖22I(HεK,1)

≤ ‖ 1

K

K∑
k=1

ˆ̃Hk,1(θ̂k,1)I(H(k),ε
K,1 )(θ̂k,2 − θ∗k −

1

n/2
Bk(θ

∗
k))‖22.

Since { ˆ̃Hk,1(θ̂k,1)I(H(k),ε
K,1 )}Kk=1 are independent of {θ̂k,2}Kk=1, following the proof of Lemma B.8,

it can be similarly showed that E‖ 1
K

∑K
k=1

ˆ̃Hk,1(θ̂k,1)I(H(k),ε
K,1 )(θ̂k,2−θ∗k−

1
n/2Bk(θ

∗
k))‖22 ≤

C1
nK +

C2
n2K

+ C3
n3 . For the R2 term appeared in (59), since ‖ 1

K

∑K
k=1(φ̂bck,2 − φ∗)‖2 is bounded, then we

can apply Hölder’s inequality and Markov’s inequality to obtain

E (R2)

≤ CE‖ 1

K

K∑
k=1

(φ̂bck,2 − φ∗)‖2I(‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖22I(HεK,1) > C3)

≤ C

√√√√E‖ 1

K

∑
k=1

(φ̂bck,2 − φ∗)‖22P (‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖22I(HεK,1) > C3)

≤ C1

nK
+

C2

n2K
+
C3

n3
.
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For the last R3 term in Equation (59), using the boundedness of ‖φ̂dWD
1 − φ∗‖22, we have that

E (R3) ≤ CP ((HεK,1)c) ≤ C5K
nv̄ . Now the proof is complete.

B.8 Proof of Theorem 5

Proof Similar to Lemma B.5, we first prove that the following term is of op(N−1/2):

{
K∑
s=1

Ĥs,1(θ̂s,1)−1}−1
K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2−φ∗)−{
K∑
s=1

Hs(θ
∗
s)
−1}−1

K∑
k=1

Hk(θ
∗
k)
−1(φ̂bck,2−φ∗)

for K = o(n2). Denote the LHS term of the above equation as RH . We have proved in the previous
theorem that P (HεK,1)→ 1 when v̄ ≥ 2, so we only need to show RHI(HεK,1) = op(1).

‖RH‖2I(HεK,1)

≤
√
N‖{ 1

K

K∑
s=1

Ĥs,1(θ̂s,1)−1}−1 − { 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−1‖2I(HεK,1)‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖2

+C
√
N‖ 1

K

K∑
k=1

(Ĥk,1(θ̂k,1)−1 −Hk(θ
∗
k)
−1)(φ̂bck,2 − φ∗)‖2I(HεK,1)

= RH,1 + CRH,2

For K = o(n2), we have shown in the proof of Theorem 5 that

I(HεK,1)‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖2 = Op(
1√
N

).

Besides, we also have that

‖{ 1

K

K∑
s=1

Ĥs,1(θ̂s,1)−1}−1 − { 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−1‖2I(HεK,1) = Op(

1√
n

).

Combining those two results we prove that RH,1 = Op(
1√
n

) = op(1). Now we turn to bound RH,2.
Note that

RH,2 ≤
√
N‖ 1

K

K∑
k=1

( ˆ̃Hk,1(θ̂k,1)− H̃k,1(θ∗k))I(H(k),ε
K,1 )(θ̂bck,2 − θ∗k)‖2 = R

(1)
H,2.

From previous derivation, we know that when K = o(n2) the leading order term in R(1)
H,2 is

R
(2)
H,2 =

√
N‖ 1

K

K∑
k=1

( ˆ̃Hk,1(θ̂k,1)− H̃k,1(θ∗k))I(H(k),ε
K,1 )

1

n/2

n/2∑
i=1

d
(2)
i,k (θ∗k)‖2,

where di,k(θ∗k)
(j) = Qk(θ

∗
k)∇θkM(X

(j)
k,i ; θ

∗
k), so we only need to show that R(2)

H,2 = op(1). Denote

m = n/2, then using the independence between ˆ̃Hk,1(θ̂k,1) and d(2)
i,k (θ∗k), we have that

1

N
E(R

(2)
H,2)2 ≤ 1

K2

K∑
k=1

E
(
‖( ˆ̃Hk,1(θ̂k,1)− H̃k,1(θ∗k))I(H(k),ε

K,1 )‖22
)
E

(
‖ 1

m

m∑
i=1

d
(2)
i,k (θ∗k)‖22

)
+ 0 = O(

1

Nn
).
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Then by Markov’s inequality it’s direct to show R
(2)
H,2 = op(1). Similarly we can show that

√
N

(
{
K∑
s=1

Ĥs,2(θ̂s,2)−1}−1
K∑
k=1

Ĥk,2(θ̂k,2)−1(φ̂bck,1 − φ∗)− {
K∑
s=1

Hs(θ
∗
s)
−1}−1

K∑
k=1

Hk(θ
∗
k)
−1(φ̂bck,1 − φ∗)

)

is op(1) forK = o(n2). Now with Slutsky’s lemma, it remains to establish the asymptotic normality
of

1

2

2∑
j=1

{
K∑
s=1

Hs(θ
∗
s)
−1}−1

K∑
k=1

Hk(θ
∗
k)
−1φ̂bck,j ,

and the proof directly follows from the proof of Lemma B.10.

B.9 Proof of Corollary 8

Proof The coefficient 2 in the leading term is derived the same as the proof in Lemma B.9, and the
remainders can be derived if we follow the proof of Lemma B.8.

C. Additional numerical results

C.1 Simulation results based on the errors in variables model

In this simulation experiment, we simulated the errors-in-variables Model (6) with the objective
function (7) to compare the performance of the full sample, the split and conquer and the weighted
distributed estimators: φ̂full, φ̂SaC and φ̂WD. The simulation was carried out by first generating IID
{Zi,k} from N (µZ , σ

2
Z), and then upon given a Zi,k, (Xk,i, Yi,k)

T were independently drawn from
N
(
(Zi,k, φ

∗ + λ∗kZi,k)
T , σ2I2×2

)
. We chose φ∗ = 1,K = 2, σ2 = 1 and n1 = n2 = 5 × 104 =

N/2, and λ∗1, λ
∗
2, µZ and σ2

Z were those reported in Table 3 under four scenarios. As discussed in
Section 2, the relative efficiency of φ̂full to φ̂SaC depends on the ratio σ2(E(Z))2/(var(Z)E(Z2))
as shown in (8). We designed four scenarios according to the above ratio under λ∗1 6= λ∗2 and EZ 6=
0, respectively, which represented the settings where the full sample estimator φ̂full would be less
(Scenario 1) or more (Scenario 2) efficient than the split and conquer estimator as predicted by the
ratio, but not as efficient as the weighted distributed estimator φ̂WD. Scenario 3 (λ∗1 6= λ∗2, EZ = 0)
was the case when φ̂full and φ̂WD would be asymptotically equivalent, and both estimators would
be more efficient than φ̂SaC . Scenario 4 was the homogeneous case with λ∗1 = λ∗2 in which all three
estimators would have the same asymptotic efficiency. For all four scenarios, the ARE column of
Table 3 confirmed the relative efficiency as predicted by the asymptotic variances in (8), and was
well reflected in the comparison of the root mean square errors, as the bias is of smaller order as
compared with that of the standard deviation and thus negligible.

C.2 Simulation results based on the logistic model

Figure 3 reports the absolute bias and root mean square errors of the estimators when p2 = 4.
Table 4 reports the empirical coverage and the average width of the CIs when p2 = 4. Table 5
reports the average CPU time per simulation run based on 500 replications of the five estimators
for a range of K for the logistic regression model with p2 = 4. It is observed in Figure 3 that the
bias of the estimators were smaller with p2 = 4 compared to the results with p2 = 10 in Figure
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Table 3: Average root mean square error (RMSE) and the standard deviation (SD), multiplied by
102, of the full sample estimator φ̂full, the SaC estimator φ̂SaC and the WD estimator φ̂WD under
four scenarios for the errors-in-variables model (12) for N = 105,K = 2 and n1 = n2. AREs
(asymptotic relative efficiency) of φ̂full to φ̂SaC are calculated from (8)

φ̂full φ̂SaC φ̂WD

Scenario (λ∗1, λ
∗
2) ARE RMSE SD RMSE SD RMSE SD

Scenario 1 (0.25,3.25) 0.89 4.55 4.51 4.12 4.09 3.91 3.89
(µZ = 1, σ2

Z = 0.1) (0.5,3.5) 0.93 4.65 4.65 4.35 4.35 4.08 4.08
(0.75,3.75) 0.97 4.52 4.52 4.40 4.38 4.13 4.13

Scenario 2 (0.25,2.25) 1.18 2.95 2.95 3.24 3.24 2.89 2.89
(µZ = 3, σ2

Z = 0.5) (0.75,2.75) 1.28 3.28 3.26 3.65 3.64 3.17 3.16
(1.25,3.25) 1.31 3.71 3.71 4.16 4.07 3.64 3.61

Scenario 3 (0.25,2.25) 1.97 0.41 0.41 0.61 0.61 0.41 0.41
(µZ = 0, σ2

Z = 0.5) (0.75,2.75) 1.92 0.51 0.51 0.70 0.70 0.51 0.51
(1.25,3.25) 1.68 0.64 0.64 0.82 0.82 0.64 0.64

Scenario 4 (0.5,0.5) 1 3.25 3.24 3.31 3.28 3.30 3.26
(µZ = 4, σ2

Z = 0.5) (1.0,1.0) 1 3.53 3.53 3.59 3.59 3.59 3.59
(1.5,1.5) 1 4.06 4.03 4.08 4.07 4.06 4.06

1. As a consequence, the CIs based on the weighted distributed estimator had adequate coverage
probabilities even when K = 1000.

(a) Absolute Bias (p2 = 4) (b) RMSE (p2 = 4)

Figure 3: Average simulated bias (a) and the root mean square errors (RMSE) (b) of the weighted
distributed (WD) (red circle), the split and conquer(SaC) (blue triangle), the debiased split and
conquer (dSaC) (green square), the debiased weighted distributed (dWD) (purple cross), the sub-
sampled average mixture SAVGM (pink square cross) estimators, with respect to the number of data
blockK for the logistic regression model with the dimension p2 of the nuisance parameter λk being
4, and the full sample size N = 2× 106.
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Table 4: Coverage probabilities and widths (in parentheses, multiplied by 100) of the 1 − α confi-
dence intervals for the common parameter φ in the logistic regression model based on the asymp-
totic normality of the split and conquer (SaC), the weighted distributed (WD), the debiased split
and conquer (dSaC) and the debiased weighted distributed (dWD) estimators with respect to the
number of data blocks K. The dimension p2 of the nuisance parameter λk is 4 and total sample size
N = 2× 106

K SaC WD dSaC dWD
1− α 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

10 0.99 0.96 0.92 0.99 0.97 0.91 0.99 0.96 0.92 0.99 0.96 0.91
(2.45) (1.87) (1.57) (2.03) (1.55) (1.30) (2.45) (1.87) (1.57) (2.03) (1.55) (1.30)

50 0.99 0.95 0.91 0.98 0.93 0.89 0.99 0.95 0.91 0.99 0.93 0.88
(2.36) (1.80) (1.51) (1.97) (1.50) (1.26) (2.36) (1.80) (1.51) (1.97) (1.50) (1.26)

100 0.98 0.94 0.91 0.99 0.95 0.91 0.99 0.95 0.91 0.99 0.95 0.91
(2.36) (1.79) (1.51) (1.96) (1.49) (1.25) (2.36) (1.79) (1.51) (1.96) (1.49) (1.25)

250 0.99 0.93 0.85 0.99 0.95 0.90 0.99 0.96 0.91 0.99 0.95 0.90
(2.36) (1.79) (1.50) (1.96) (1.49) (1.25) (2.36) (1.79) (1.50) (1.96) (1.49) (1.25)

500 0.91 0.77 0.66 0.99 0.95 0.88 0.99 0.96 0.90 0.99 0.95 0.89
(2.36) (1.80) (1.51) (1.96) (1.49) (1.25) (2.36) (1.80) (1.51) (1.96) (1.49) (1.25)

1000 0.65 0.41 0.28 0.99 0.94 0.88 0.99 0.94 0.88 0.99 0.93 0.88
(2.38) (1.81) (1.52) (1.96) (1.49) (1.25) (2.38) (1.81) (1.52) (1.97) (1.50) (1.25)

2000 0.01 0.01 0.00 0.99 0.91 0.81 0.98 0.94 0.88 0.99 0.94 0.90
(2.42) (1.84) (1.55) (1.96) (1.50) (1.25) (2.42) (1.84) (1.55) (1.98) (1.50) (1.26)

Table 5: Average CPU time for each replication based on B = 500 replications for the split and
conquer (SaC), Zhang’s SAVGM, the weighted distributed (WD), the debiased split and conquer
(dSaC) and the debiased weighted distributed (dWD) estimators for the logistic regression model
with respect to K. The dimension p2 of the nuisance parameter λk is 4 and total sample size
N = 2× 106

K SaC SAVGM WD dSaC dWD
10 15.65 15.97 18.50 20.00 21.95
50 9.63 9.95 10.66 12.37 14.59
100 8.09 8.63 8.76 10.50 12.05
250 8.49 9.69 9.07 10.84 12.82
500 9.68 11.58 10.25 11.97 14.84
1000 11.67 13.81 12.32 13.93 19.08
2000 15.78 19.68 16.57 18.11 28.55

C.3 Pre-processing of the real data

The arrival delay of the previous flight that utilized the same plane was obtained by matching the
tail number of the plane. The three meteorological factors (rain rate, close surface air pressure,
and temperature) were obtained by matching this airline’s on-time performance data with the ERA5
hourly data (https://cds.climate.copernicus.eu/). This dataset includes reanalysis from 1959 onwards
whose temporal and spatial resolutions are one hour and 0.25◦ × 0.25◦, respectively. We applied
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the f(x) = log(1 + x) transformation to the rain variable due to its serious skewness. We also
standardized each covariate in each of the data blocks before performing the logistic regression
analysis.

We chose the parameter of the three meteorological factors as the common parameter based on
Figure 4, which shows that the local estimates of those three parameters are the most concentrated.

Figure 4: Histogram of the parameter estimates across the data blocks

Temperature Air Pressure Rain

Previous Delay Spring Summer Autumn
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